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In this review, the authors reflect upon the role of coronary physiology in the modern management of coronary artery

disease. They critically appraise the scientific background of the instantaneous wave-free ratio (iFR) and fractional

flow reserve (FFR), from early experimental studies to validation studies against indexes of ischemia, to clinical trials

assessing outcome. At this important juncture for the field, the authors make predictions for the future of physiological

stenosis assessment, outlining developments for both iFR and FFR in new clinical domains beyond the confines of stable

angina. With a focus on the evolving future of iFR and FFR, the authors describe how physiological assessment with iFR

may advance its application from simply justifying to guiding revascularization. (J Am Coll Cardiol 2017;70:1379–402)

© 2017 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
S ince the introduction of fractional flow reserve
(FFR) more than 20 years ago (1), physiology-
guided revascularization has become an estab-

lished practice in the modern, evidence-based
management of patients with coronary artery disease.
The central premise of coronary physiology is that
it permits identification of myocardial ischemia on
a per-vessel basis, measurable at the time of clinical
decision making. This aids the selection of stenoses
(and therefore patients) likely to benefit from
revascularization.

FFR carries a Class 1a recommendation for guiding
revascularization in angiographically intermediate
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coronary stenoses in patients with stable angina
(Table 1) (2,3). However, despite this, uptake of FFR
in coronary catheter laboratories worldwide has
remained low (Figure 1). Potential reasons for the low
adoption rate of coronary physiology despite
demonstrated clinical benefit of its use may include
time consumption to perform FFR measurements,
costs associated with adenosine, or in certain coun-
tries, no availability of adenosine, patient-related
discomfort, contraindications, or lack of reimburse-
ment. Recently, there has been renewed interest and
development in the field of coronary physiology,
driven by the introduction of a new, nonhyperemic
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ABBR EV I A T I ON S

AND ACRONYMS

ACS = acute coronary

syndrome

AUC = area under the curve

CABG = coronary artery bypass

grafting

CFR = coronary flow reserve

CI = confidence interval

FFR = fractional flow reserve

FFRmyo = myocardial

fractional flow reserve

HR = hazard ratio

HSR = hyperemic stenosis

resistance

iFR = instantaneous wave-free

ratio

MACE = major adverse cardiac

events

MI = myocardial infarction

OMT = optimal medical therapy

PCI = percutaneous coronary

intervention

PET = positron emission

tomography

STEMI = ST-segment elevation

myocardial infarction

WFP = wave-free period

WIA = wave intensity analysis
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pressure-based index of stenosis severity:
the instantaneous wave-free ratio (iFR) (4).

Five years after its initial introduction, 2
large, prospective, randomized trials have
concordantly reported noninferiority of iFR
when compared with FFR for guiding revas-
cularization (5,6). More importantly, the data
yielded from these studies have provided a
marked expansion of the patient outcome
data available for coronary physiology as a
whole. At this important juncture for the
field, we pause to critically review how far
the techniques and scientific testing for
physiological stenosis assessment have pro-
gressed, and look forward to the techniques
and applications that will define the future
of coronary physiology. Specifically, we
address the evolving future of iFR and FFR
for physiological stenosis assessment.

CORONARY PHYSIOLOGY

IN THE PRE-FFR ERA

The purpose-built pressure wires currently
used to make coronary physiology measure-
ments are the result of years of development
and miniaturization of pressure sensor tech-
nology. However, in the pioneering proced-
ures of Andreas Grüntzig in the late 1970s,
such high-fidelity equipment was not avail-
able. Nevertheless, the importance of quantifying
the hemodynamic impact of a coronary stenosis (and
the resultant response to balloon angioplasty) led
Grüntzig et al. (7) to measure and report the trans-
stenotic pressure gradient through the fluid-filled
guiding catheter. However, owing to the significant
impediment to antegrade flow imposed by the cath-
eters themselves, trans-stenotic pressure recordings
failed to gain acceptance after it was demonstrated
that the measurement was not always reliable (8).

In the early 1990s, as intracoronary pressure and
flow velocity sensor-tipped guidewires became suffi-
ciently miniaturized, a host of additional coronary
physiology measurements were proposed (Table 2)
(9). Furthermore, the notion of performing measure-
ments during hyperemia emerged. In the early days
of coronary physiology, efforts to quantify the he-
modynamic impact of a stenosis focused mainly upon
the measurement of coronary flow, rather than pres-
sure. Instead, the pressure component of combined
coronary pressure and flow indexes were considered
merely supportive of why flow may not increase or
increase abnormally in response to an impaired distal
hyperemic response (9).
FFR: INTRODUCTION AND

EXPERIMENTAL VALIDATION

In 1993, Pijls et al. (1) published work on FFR. Unlike
preceding approaches to coronary physiological
assessment, FFR specifically sought to determine
coronary flow assessment by using pressure-only–
based assessments during hyperemia. By expanding
upon the earlier work of Gould (10), who had
described the coronary circulation as an electrical
circuit of variable serial resistances, with the stenosis
of the epicardial artery being one component, Pijls
applied Ohm’s Law (V ¼ IR, where V is the voltage
difference, I is the current, and R is the resistance) to
rationalize that when coronary resistance was stable
and minimal (as occurred during maximal arterial
dilation) (11,12), a direct relation between coronary
pressure and flow could be presumed.

FFR is defined as the ratio of the pressure distal to
a stenosis (Pd) relative to the pressure proximal to the
stenosis (Pa) during hyperemia induced by a vaso-
dilating agent. Accordingly, an FFR value of 0.80
represents a 20% pressure loss across the stenosis.
This theory was tested experimentally in 5 anes-
thetized dogs in whom pressure-derived FFR was
compared with Doppler-derived fractional coronary
artery flow reserve in surgically dissected, balloon-
ligated proximal circumflex arteries during intra-
coronary administration of papaverine (1). Despite
the inherent differences between human and animal
models, in these early experiments, Pijls et al. (1)
demonstrated that FFR could theoretically be used
under idealized experimental conditions to deter-
mine the flow-limiting potential of a coronary artery
stenosis. Although the calculated values of FFR
correlated closely with those directly measured by a
Doppler velocity meter, replotting the data as a
Bland-Altman plot shows that the pressure- and flow-
derived FFR values are less tightly associated, as may
be suggested by the correlations (Figure 2).

Nowadays, only a simplified version of FFR is used
clinically, whereby the right atrial pressure mea-
surement is omitted. However, the description of FFR
to individually quantify myocardial (FFRmyo), coro-
nary, and collateral components of the coronary
circulation (Table 3) helped validate the concept and
engender continued research in humans.

FFR: FROM THE ANIMAL

TO THE HUMAN MODEL

Early studies of FFR in the human model focused
on establishing FFR cutoff values for the detection
of inducible ischemia, defined by a variety of



TABLE 1 Guideline Recommendations for the Use of FFR

Organization(s) Guideline Title
Year of

Publication Recommendation Class
Level of
Evidence

European Society of Cardiology and the
European Association for Cardio-
Thoracic Surgery

Guidelines on myocardial
revascularization

2014 FFR to identify hemodynamically
relevant coronary lesion(s) in
stable patients when evidence
of ischemia is not available (3)

1 A

American College of Cardiology/American
Heart Association, American
Association for Thoracic Surgery,
Preventive Cardiovascular Nurses
Association, Society for Cardiovascular
Angiography and Interventions, and
Society of Thoracic Surgeons

Guideline for the Diagnosis and
Management of Patients
With Stable Ischemic Heart
Disease

2012 For recommendations about
revascularization, coronary
stenoses with FFR #0.80 can
also be considered to be
significant (2)

NA NA

American Association for Thoracic Surgery,
American Heart Association, American
Society of Echocardiography, American
Society of Nuclear Cardiology, Society
for Cardiovascular Angiography and
Interventions, Society of
Cardiovascular Computed Tomography,
and Society of Thoracic Surgeons

Appropriate Use Criteria for
Coronary Revascularization
in Patients With Stable
Ischemic Heart Disease

2017 If no stress test performed or, if
performed, results are
indeterminate, FFR #0.80 can
be used to determine
appropriateness of
revascularization (35)

NA NA

FFR ¼ fractional flow reserve; NA ¼ not applicable.
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noninvasive tests. The first of these studies used ex-
ercise treadmill testing pre- and post-percutaneous
transluminal coronary angioplasty in a total of 60
patients with single-vessel disease and normal left
ventricular function (13).
FIGURE 1 Global Adoption of Coronary Physiology to Guide Revascu

< 6%

Despite clinical guideline recommendations for its use, the uptake of frac

permission from Philips Volcano, market research report by Decision Re
The key findings of this first-in-man study
demonstrated that a cutoff value of FFRmyo <0.75
accurately discriminated between lesions associated
with inducible ischemia and those not, as defined by
exercise treadmill testing. Moreover, the hypothesis
larization Decision Making in 2016

6-10% > 10%

tional flow reserve in coronary catheter laboratories worldwide remains low. Reproduced with

sources Group.



TABLE 2 Pre–FFR-Era Coronary Physiology Indexes

Index
Physiological
Parameter Advantages Disadvantages

Trans-stenotic gradient
at rest

Pressure Provides a quantifiable measure of the
acute hemodynamic change after
coronary intervention

Hyperemia not required

Systematic overestimation of
physiological severity due to partial
obstruction of antegrade flow by
measuring catheter (9)

Trans-stenotic gradient
during hyperemia

Pressure Provides a quantifiable measure of the
acute hemodynamic change after
coronary intervention

Hyperemia magnifies the pressure gradient
signal, facilitating easier quantification

Absence of a significant hyperemic trans-
stenotic pressure gradient is
physiologically ambiguous: values
can be related to the absence of a
flow-limiting stenosis or to the
presence an impaired distal
vasodilator response to hyperemia

Hyperemia required

CFR Flow Well validated for the detection of a lesion
of increasing severity

Measurement of flow (rather than
pressure) is physiologically more
intuitive for the identification of
ischemia

Lack of a definitive normal value
CFR values can be influenced by

hemodynamics, loading conditions
and contractility (57)

An abnormal CFR does not delineate
between epicardial and microvascular
disease

Similar CFR values may be obtained at
different levels of resting and
hyperemic flow

Hyperemia required

Maximal hyperemic
coronary flow velocity

Flow Indicative of the increase in coronary
conductance achieved with balloon
angioplasty

Abnormal maximal hyperemic coronary
flow velocity does not delineate
between epicardial and microvascular
disease

Hyperemia required

Slope of the relation
between mean gradient
and coronary flow

Pressure and flow The slope of this relation is inversely
correlated with the resistance of the
stenotic lesion

Use of mean gradient and flow velocities
at baseline and maximal hyperemia
oversimplifies coronary pressure/flow
relationships (9)

Hyperemia required

Slope of the instantaneous
hyperemic flow
velocity/pressure
relation

Pressure and flow Provides a more comprehensive
interpretation of the fluid dynamics
across the stenotic lesion, as well as of
the myocardial capillary circulation

Offline calculation limits clinical
applicability and prevents use in
unselected patients

Hyperemia required

CFR ¼ coronary flow reserve; FFR ¼ fractional flow reserve.
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that FFRmyo of angiographically normal stenoses
should equal w1.0 was supported by the subgroup of
5 patients (18 unobstructed vessels) who had a mean
FFRmyo value of 0.98 � 0.03.

Multiple comparisons have since been made be-
tween FFR and a range of noninvasive ischemia tests
spanning a variety of clinical settings and using a
spectrum of pharmacological vasodilator agents
(Table 4). Important findings across this more dispa-
rate dataset transpired. Firstly, the so-called FFR gray
zone emerged as a concept following the observation
that the specificity of FFR for the identification of
ischemia compared with noninvasive testing
decreased in the FFR 0.76 to 0.80 range. Secondly,
the overall diagnostic accuracy of FFR (i.e., classifi-
cation agreement between FFR and noninvasive
tests) for the detection of ischemia was approxi-
mately 80%. This fair, but imperfect, level of agree-
ment between FFR and other ischemic indexes
reflects the lack of a true gold standard test for
ischemia, with the limitations of each modality
effectively ever preventing a perfect test for ischemia
detection. Although FFR is often regarded as repre-
senting such a gold standard, it must be remembered
that the validation of FFR for ischemia detection is
derived from small studies in study patients with
severe disease using noninvasive comparators
contemporaneous in the early 1990s. Additionally,
although measurement reproducibility with FFR is
excellent, because most clinical populations cluster
close to the clinical cutpoints, it means that it is
difficult to attain levels of diagnostic accuracy in
excess of 80%, even when FFR is compared against
itself (Figure 3).

FFR AND CLINICAL OUTCOME STUDIES

The early FFR ischemia detection studies provided
important foundations for the design of subsequent
FFR patient outcome studies. Of particular impor-
tance were the establishment of a single FFR
“ischemic” cutoff value and the observation that



FIGURE 2 Bland-Altman Analysis of Pressure-Derived FFR and Doppler-Derived Fractional Coronary Artery Flow Reserve
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The original validation work for FFR measured a true FFR by directly measuring flow velocity in the presence and absence of an artificially introduced stenosis (Qs/Qn).

Replotting the data as a Bland-Altman plot shows that the Qs/Qn values are less tightly associated as may be suggested by linear correlations. Reproduced with

permission from Nijjer et al. (54). FFR ¼ fractional flow reserve; Qn ¼ flow velocity in the absence of a stenosis; Qs ¼ flow velocity in the presence of a stenosis.

TABLE 3 Calculations of Myocardial, Coronary, and Collateral FFR

Component of
Coronary Circulation FFR Derivative Equation Considerations

Myocardium FFRmyo Pd � Pv
Pa � Pv

Requires measurement of
mean right atrial
pressure.

Is dependent on the health
of the microcirculation.

Epicardial coronary artery FFRcor Pd � Pw
Pa � Pw

Requires measurement of
mean coronary wedge
pressure or distal
coronary pressure
during balloon inflation.

Is dependent on the health
of the microcirculation.

Collateral supply Collateral FFR FFRmyo � FFRcor Requires measurement of
mean coronary wedge
pressure or distal
coronary pressure
during balloon inflation.

Is dependent on the health
of the microcirculation.

FFR ¼ fractional flow reserve; FFRcor ¼ coronary fractional flow reserve; FFRmyo ¼ myocardial fractional flow
reserve;Pa¼ aorticpressure; Pd¼ distal coronary pressure; Pv¼ right atrial pressure; Pw¼ coronarywedge pressure.
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deferral of revascularization according to the FFR
>0.75 cutoff value appeared to be safe.

THE DEFER STUDY. To help define the potential role
of FFR as a generalizable tool for clinical decision
making, the prospective, randomized the DEFER
(Deferral Versus Performance of PTCA [percutaneous
transluminal coronary angioplasty] in Patients With-
out Documented Ischemia) study was conducted (14).
In this study, a total of 325 patients with stable cor-
onary disease and intermediate lesions referred for
PTCA underwent FFR and subsequent randomization
to 1 of 3 groups. If the FFR were >0.75, patients were
randomly assigned to deferral (deferral group: n ¼ 91)
or performance (performance group: n ¼ 90) of PTCA.
If the FFR were <0.75, PTCA was performed as plan-
ned (reference group: n ¼ 144). The primary endpoint
was the absence of adverse cardiac events during
24 months of follow-up. Subsequent to this originally
reported endpoint, longer-term follow-up of the
DEFER cohort is now available at 5 years (15) and 15
years (16). Across this broad timespan, the core mes-
sages that, in patients with stable coronary disease,
deferral of stenoses with FFR >0.75 is comparatively
safe and that revascularization of stenoses with FFR
>0.75 confers no additional therapeutic benefit has
remained.

THE FAME STUDY. With data from the DEFER study
supporting that medical therapy alone was likely as
effective as revascularization in nonischemic coro-
nary stenoses, the FAME (Fractional Flow Reserve
versus Angiography for Multi vessel Evaluation)
study was performed to assess the clinical effective-
ness of an FFR-guided versus angiography-guided
approach to revascularization in patients with
multivessel coronary artery disease (17). In this pro-
spective, multicenter trial, 1,005 patients with at least
50% stenosis of the vessel diameter in at least 2 of the
3 major epicardial coronary arteries were randomly
assigned to undergo percutaneous coronary inter-
vention (PCI) with implantation of drug-eluting
stents guided by angiography alone or guided by
FFR measurements. A notable difference from any of
the previous FFR studies (1,18,19) was the upward
adjustment of the FFR cutoff for hemodynamic sig-
nificance from <0.75 (referred to as the ischemic
cutpoint) to #0.80 (referred to as the clinical cutoff
value). The rationale for this was that FFR >0.80 had



TABLE 4 Studies of FFR Compared With Noninvasive Stress Testing to Assess Myocardial Ischemia

First Author, Year (Ref. #)
Number of

Patients (Lesions) Ischemic Test
Best Cutoff

Value Accuracy (%) Clinical Setting

Intravenous adenosine infusion (140 mg/kg/min)

Pijls et al., 1995 (18) 60 (60) X-ECG 0.74 97 SVD

Pijls et al., 1996 (19) 45 (45) X-ECG, MPS, DSE 0.75 93 SVD

Jimenez-Navarro et al., 2001 (58) 21 (21) DSE 0.75 90 SVD

Rieber et al., 2004 (59) 48 (48) MPS, DSE 0.75 76–81 MVD

Erhard et al., 2005 (60) 47 (47) MPS, DSE 0.75 77 MVD

Hacker et al., 2005 (61) 50 (50) MPS 0.75 86 SVD

Total or average (as applicable) 271 (271) NA 0.75 87 NA

Intracoronary adenosine bolus (maximum 40–60 mg)

Tron et al., 1995 (62) 62 (70) MPS 0.69 67 1, 2, and 3-VD

Bartunek et al., 1997 (63) 37 (37) DSE 0.67 90 SVD

Caymaz et al., 2000 (64) 30 (40) MPS 0.75 95 SVD

Fearon et al., 2000 (65) 10 (10) MPS 0.75 95 SVD

Chamuleau et al., 2001 (66) 127 (161) MPS 0.74 77 MVD

Seo et al., 2002 (67) 25 (25) MPS 0.75 60 Previous MI

Krüger et al., 2005 (68) 42 (42) MPS 0.75 88 ISR

Samady et al., 2006 (69) 48 (48) MPS, DSE 0.78 92 Previous MI

van de Hoef et al., 2012 (70) 232 (299) MPS 0.76 74 MVD

Total or average (as applicable) 613 (732) NA 0.74 83 NA

Other method of vasodilation

De Bruyne et al., 1995 (intracoronary papaverine or
adenosine) (13)

60 (60) X-ECG, MPS 0.66 87 SVD

Bartunek et al., 1997 (intracoronary papaverine or
adenosine) (63)

75 (75) DSE 0.75 81 SVD

Abe et al., 2000 (intravenous ATP) (71) 46 (46) MPS 0.75 91 SVD

De Bruyne et al., 2001 (intravenous or intracoronary
adenosine, or intravenous ATP) (72)

57 (57) MPS 0.78 85 Previous MI

Yanagisawa et al., 2002 (intracoronary papaverine) (39) 165 (194) MPS 0.75 76 Previous MI

Ziaee et al., 2004 (intravenous or intracoronary
adenosine) (73)

55 (55) MPS, X-ECG, DSE 0.75 88 Ostial

Morishima et al., 2004 (intracoronary papaverine) (74) 20 (20) MPS 0.75 85 SVD

Kobori et al., 2005 (intracoronary papaverine) (75) 147 (155) MPS 0.75 70 Restenosis

Ragosta et al., 2007 (intracoronary adenosine, 30–40 mg
in the RCA, 80–100 mg in the LMCA) (76)

36 (36) MPS 0.75 69 MVD

Total or average (as applicable) 661 (698) NA 0.74 81 NA

Total or average (as applicable) for all studies 1,545 (1,701) NA 0.74 83 NA

Adapted with permission from van de Hoef et al. (79).

ATP ¼ adenosine triphosphate; DSE ¼ dobutamine stress echocardiogram; ISR ¼ in-stent restenosis; LMCA ¼ left main coronary artery; MI ¼ myocardial infarction;
MPS ¼ myocardial perfusion scan; MVD ¼ multivessel disease; NA ¼ not applicable; RCA ¼ right coronary artery; SVD ¼ single-vessel disease; VD ¼ vessel disease;
X-ECG ¼ exercise electrocardiogram.
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been demonstrated to exclude ischemia in 90% of
cases (from data from 45 patients) (20) and that, by
accepting the upper limit of the gray zone, the po-
tential number of ischemic lesions left untreated was
decreased (17).

The primary endpoint for the FAME study was the
rate of death, nonfatal myocardial infarction (MI),
and repeat revascularization at 1 year. If randomized
to angiography guidance, the protocol mandated that
all visually estimated >50% stenoses underwent PCI
at the operator’s discretion, versus only stenoses with
FFR #0.80 if randomized to FFR. The headline result
of the FAME study was a significant reduction in
major adverse cardiac events (MACE) at 1 year in the
FFR versus angiography-alone group (13.2% vs.
18.3%; relative risk 0.72; 95% confidence interval [CI]:
0.54 to 0.96, respectively; p ¼ 0.02).

THE FAME 2 STUDY. Both the DEFER and FAME
studies supported the evolving strategy of revascu-
larization of ischemic lesions and medical treatment
of nonischemic lesions. Having already highlighted
the inadequacies of coronary angiography alone to
guide revascularization, the 2009 FAME 2 (Fractional
Flow Reserve–Guided PCI versus Medical Therapy in
Stable Coronary Disease) study tested the hypothesis
that FFR-guided PCI plus optimal medical therapy
(OMT) would be superior to OMT alone (21). The study



FIGURE 3 Diagnostic Accuracy of Repeated FFR Measurements
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population consisted of patients with multivessel
coronary artery disease already on OMT and who had
PCI being considered. FFR was first performed in
all indicated stenoses. If at least 1 stenosis was
FFR #0.80, patients were randomly assigned to
receive either PCI in addition to OMT or OMT alone. If
all stenoses were FFR >0.80, patients continued on
OMT. The primary endpoint was a composite of
death, MI, or urgent revascularization.
TABLE 5 Summary Characteristics of Patient Outcome FFR Trials

Trial (Ref. #) Year
Patients Guided
by Physiology

FFR Cutpoint for
Functional Significance

DEFER (14) 2001 91 <0.75

FAME (17) 2009 509 #0.80

FAME 2 (21) 2012 447 #0.80

BMS ¼ bare-metal stent; DEFER ¼ Deferral Versus Performance of PTCA (percutane
DES ¼ drug-eluting stent; FAME ¼ Fractional Flow Reserve Versus Angiography for M
Therapy in Stable Coronary Disease; FFR ¼ fractional flow reserve; PCI ¼ percutaneous
The study was halted prematurely (mean follow-up
7 months) after a significant reduction in the com-
posite primary endpoint emerged in the PCI versus
OMT group (hazard ratio [HR]: 0.32; 95% CI: 0.19 to
0.53; p < 0.001). However, this composite endpoint
was driven by significantly fewer urgent re-
vascularizations in the PCI arm (HR: 0.13; 95% CI:
0.06 to 0.30; p < 0.001), rather than by any signal
for decreased mortality or MI. The premature
Mean FFR Treatment

Defer: 0.87 � 0.07
Perform: 0.87 � 0.06
Registry: 0.56 � 0.16

PCI/BMS vs. FFR-guided
deferral

Overall cohort: 0.71� 0.18
Ischemic lesions: 0.60� 0.14
Nonischemic lesions: 0.88� 0.05

Angiography-guided vs.
FFR-guided PCI (DES)

InlesionswithFFR#0.80:0.64�
0.13 (range: 0.19–0.80)

FFR-guided PCIþ OMT group:
0.68� 0.10

OMT alone: 0.68� 0.15

FFR-guided PCI (DES) þ
OMT vs. OMT alone

ous transluminal coronary angioplasty) in Patients Without Documented Ischemia;
ultivessel Evaluation; FAME 2 ¼ Fractional Flow Reserve–Guided PCI versus Medical
coronary intervention; OMT ¼ optimal medical therapy.



FIGURE 4 Study Population Sizes From Coronary Physiology Outcome Trials
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termination of the study in this fashion obliged the
FAME 2 investigators to limit their conclusions to
FFR-guided PCI plus OMT leading to a decreased
need for urgent revascularization, as compared with
OMT alone (21). Additionally, the study received
much criticism about the absence of blinding of
patients and investigators.

FROM EVIDENCE TO GUIDELINE: THE DEFER, FAME,

AND FAME 2 STUDIES IN CONTEXT. In 2013, FFR
received a Level 1A recommendation by the European
Society of Cardiology to guide revascularization in
patients with stable angina, intermediate coronary
stenosis, and no prior ischemia test. Without
detracting from the importance of the landmark FFR
patient outcome trials, a number of critical observa-
tions can be levied at the transferability of the find-
ings to modern-day FFR practice, especially as
framed within current clinical guidelines.

First, the number of patients guided by FFR was
relatively small by modern patient outcome trial
standards. In the DEFER, FAME, and FAME 2 studies,
respective totals of 91, 509, and 447 patients were
assigned to FFR-guided therapy (Table 5). This com-
pares with a combined total of w4,500 patients
assigned to coronary physiology–guided therapy
in recently reported coronary physiology trials
(Figure 4) (5,6).

Second, the absence of the FFR gray zone from
revascularization guidelines means that interpreta-
tion of FFR values between 0.75 to 0.80 frequently
pose a challenge for operators in daily clinical prac-
tice. FFR values that lie within this range must be
interpreted in the context of the individual patient.
For example, if an FFR gray zone measurement re-
lates to a complex lesion, in a patient without severe
angina, or with other clinical factors, such as
impeding surgery or high bleeding risk, such a ste-
nosis may be appropriately deferred. This practice is
supported by the data from the DEFER trial (which
adopted the initial FFR 0.75 cutoff) and respects the
fundamental principle that ischemia is a continuum
of disease, and not simply a dichotomous status.

Third, similar to the early validation studies
comparing FFR with noninvasive ischemic tests
(13,19), in the FFR outcome studies, physiologically
positive and negative groups were characterized by
markedly severe and normal mean FFR values
(Table 5). This bimodal distribution of FFR values
denotes a different disease population than real-
world clinical populations where unimodal distribu-
tions of FFR values (Figure 5) are observed, with
values tightly clustered around the 0.80 cutoff
(5,6,22).

Last, the DEFER, FAME, and FAME 2 studies were
notable for their omission of measurement of right
atrial pressure in the determination of the FFR value.
Although undoubtedly simpler for the practicing
physician, this deviation from the validated FFRmyo
in both animal and human models has been associ-
ated with a systematic underestimation of FFR
values, with resultant implications on revasculariza-
tion decision made in accordance with the FFR 0.80
cutoff value (Table 6) (23,24).

FUNDAMENTALS OF iFR

Since the early work of Gould et al. (25) in the canine
model, it has long been appreciated that resting cor-
onary flow remains stable across a wide range of
stenosis severities (until near occlusion). In contrast,
hyperemic flow declines significantly beyond
approximately 50% reduction in lumen diameter (25).
The stable flow conditions that exist in the resting
state provide an ideal environment for the applica-
tion of a pressure-based index of stenosis severity.
However, the confounding influences of myocardial
contraction and relaxation on flow initially proved
insurmountable for early attempts at applying resting



FIGURE 5 Differing Distribution of FFR Values in Clinical and Nonclinical Datasets
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as in Figures 2 and 4.
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pressure–based indexes (26). In order to understand
why iFR is now capable of determining physiological
stenosis severity in the resting state, a basic under-
standing of the mechanisms of cardiac mechanics is
required. Using wave intensity analysis (WIA), it is
possible to perform quantifiable measurements in
humans to elucidate such mechanisms.

Derived from combined coronary pressure and flow
data, WIA permits the separation of waves (a distur-
bance that spreads directionally with time) according
to their origin and direction of travel. This makes WIA
an ideal tool to interrogate the coronary circulation,
given that both proximal and distal vascular beds
(aortic and microcirculatory originating) of the coro-
nary artery contribute energy to the system. By clas-
sifying waves by their origin (proximal or distal) and
influence on blood flow (expansion or compression), a
total of 6 waves can be identified in the human cor-
onary circulation (27). The wave-free period (WFP)
occurs in diastole, where it was observed that the
generation of new waves is absent, and competing
waves that affect coronary blood flow are quiescent
(Figure 6) (4). The defining features of the WFP of
diastole are: 1) flow velocity is approximately 30%
higher than whole-cycle resting flow velocity;
2) intracoronary pressure and flow decline together in
a linear fashion; and 3) microvascular resistance is
significantly more stable and lower than that over the
rest of the cardiac cycle (4). From a physiological
standpoint, these features make the WFP a suitable
window within the cardiac cycle during which a
pressure-only assessment of the hemodynamic sig-
nificance of coronary stenoses can be made, without
the need for maximal pharmacological vasodilation.
Furthermore, because the WFP exists as a proportion
of diastole changing with alterations of the R-R in-
terval, iFR can also be calculated dynamically on a
beat-by-beat basis without requiring several beats to
be averaged at a time (4).

WHAT DOES iFR ACTUALLY MEASURE?

Although the WFP provided the theoretical frame-
work for iFR, it did not sufficiently explain exactly
what iFR was measuring. Unlike FFR, which was
defined from first principles as the maximum
achievable myocardial blood flow in the presence of
a coronary artery stenosis as a percentage of the
maximum blood flow in the hypothetical case of a
completely normal artery (1), the definition of iFR was
initially less clear, opting instead for a technical
description of the ratio of distal coronary to aortic
pressure during the WFP of diastole (4).
Subsequent study of the coronary pressure–flow
relationship in humans with and without angio-
graphic evidence of obstructive atherosclerosis, un-
der resting and hyperemic conditions, provided the
necessary insight to determine physiologically what
iFR actually measures. By replicating the earlier ani-
mal studies in humans, the IDEAL (Iberian-Dutch-
English) study (28) demonstrated that trans-stenotic
pressure gradients at rest were predominantly
determined by compensatory vasodilator changes in



TABLE 6 Considerations for the Omission of Right Atrial Pressure From the

Calculation of FFR

Consideration For Against

Physiological
reasoning
regarding FFR

Right atrial pressure is assumed
negligible relative to aortic
pressure (77)

Right atrial pressure values vary
individually amongst patients

Right atrial pressure is a key
component of the original
FFRmyo equation that was
validated against ischemia
testing (1,19)

Omission of right atrial pressure
systematically underestimates
FFRmyo values (23)

Revascularization
decision making

FAME and FAME 2 clinical
outcome trials omitted right
atrial pressure from the FFR
calculation

Initially deferred stenoses do not
cross the FFR 0.75 threshold
when right atrial pressure is
subsequently included in the
FFR calculation (24)

FAME and FAME 2 clinical outcome
trials are not representative of
intermediate disease clinical
populations (22)

Approximately 10% of initially
deferred stenoses cross the FFR
0.80 threshold when right atrial
pressure is subsequently included
in the FFR calculation (24)

Abbreviations as in Tables 3 and 5.
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microvascular resistance (Figure 7). Therefore, ac-
cording to the homeostatic principles of coronary
autoregulation, for a stenosis to have a meaningful
physiological impact upon the flow of blood to the
tic Diagram Illustrating the Wave-Free Period of Diastole and Associated
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stantaneous resistance (bottom trace) demonstrate the stability of the wave-fre
myocardium, it should have a gradient that is detec-
tible at rest (28). In simpler terms, by means of the
distal pressure value obtained during the WFP of
diastole, iFR measures the physiological impact of a
coronary stenosis on the distal coronary bed
(Figure 7).

CAN RESTING WHOLE-CYCLE Pd/Pa BE USED

AS AN ALTERNATIVE TO iFR?

The notion that resting whole-cycle averaged mea-
surements (Pd/Pa) could be used as an alternative
to FFR was always fiercely opposed as physiologi-
cally implausible by the inventors of FFR. However,
with the renewed focus on resting pressure mea-
surements that iFR has engendered, comparisons
have now been drawn between iFR and resting
whole-cycle Pd/Pa. In the RESOLVE study (A
Multicenter Study Evaluating the Diagnostic Accu-
racy of iFR Compared to FFR) (29), a strong linear
correlation between iFR and Pd/Pa values was
demonstrated. Although Bland-Altman analysis
revealed that substantial variation between iFR and
Pd/Pa existed, some observers commented that both
indexes had similar correlation to FFR, and were
Hemodynamic Characteristics
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propagating from the proximal and distal ends of the vessel are

(B) Flow velocity (top trace), proximal (light blue), and distal (purple)

e period beat to beat. Reprinted with permission from Nijjer et al. (54).



FIGURE 7 Coronary Autoregulation as a Means of Quantifying Physiological Stenosis Severity Under Resting Conditions
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thus essentially the same and may be used inter-
changeably (30).

To challenge that statement scientifically requires
revision of the physiological differences between
Pd/Pa and iFR (Table 7). The most significant of these
is that Pd/Pa is a whole-cycle measure, whereas iFR
is measured in the WFP of diastole only. Given that
the majority of coronary blood flow occurs during
diastole, from an engineering standpoint, where the
signal-to-noise ratio defines the utility of a tool, sys-
tole can be considered primarily as “noise.” There-
fore, by limiting interrogation of the trans-stenotic
pressure ratio to the period of greatest flow (i.e.,
signal) without the confounding influences of



TABLE 7 Comparisons Between FFR, iFR, and Pd/Pa Pressure-Based Indexes of Stenosis Severity

Index
Conditions for
Measurement

Sampling
Window Acquisition

Coronary
Flow

Outcome-Derived
Cutoff Value

for Hemodynamic
Significance

Gray Zone
Range

Dynamic
Range

Independently
Assess Tandem

Stenoses

Resilience to
Pressure
Wire Drift

FFR Hyperemia Whole cardiac
cycle

Averaged (w5 beats) þþ #0.80 0.75–0.80 Wide No Resilient

iFR Baseline Wave-free period
of diastole

Beat-by-beat þ #0.89 NA Wide Yes Resilient

Pd/Pa Baseline Whole cardiac
cycle

Averaged (w5 beats) w NA NA Narrow No Susceptible

iFR ¼ instantaneous wave-free ratio; other abbreviations as in Tables 1 and 3.
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myocardial contraction on flow (i.e., noise), iFR
enjoys a superior signal-to-noise ratio than that of
whole-cycle Pd/Pa (31).

This enhanced quality of iFR equips it with
important advantages over Pd/Pa for the pressure-
based assessment of physiological stenosis severity.
Because the range of values for any given population
is decreased with Pd/Pa as compared with iFR, Pd/Pa
has a lower diagnostic resolution to distinguish he-
modynamically important lesions (Figure 8) (32). The
tight clustering of Pd/Pa values (coupled with the
FIGURE 8 The Distribution of Values for FFR, iFR, and Whole-Cycle

Value
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(95% range 0.39 - 1.00)

0

FFR
(95% range 0.43 - 0.97)
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(95% range 0.59 - 1.00)

Solid black lines indicate the cutpoint value. The highlighted regions in

224 (50.1%), and 278 (62.2%) values lay within �0.05 U of the cutpoin

with permission from Cook et al. (33). Pa ¼ aortic pressure; Pd ¼ distal
need to average measurements over w3 to 5 beats)
means that Pd/Pa has a much lower fidelity for the
pullback assessment of serial lesions or diffuse dis-
ease, as compared with iFR (4). Lastly, iFR has been
demonstrated to be significantly more robust to
clinically accepted levels of pressure wire drift than
whole-cycle Pd/Pa (33). Therefore, aside from the lack
of a well-defined cutoff value for Pd/Pa, validation
against ischemia testing for Pd/Pa, and patient
outcome data for Pd/Pa, the differences in clinical
applicability between iFR and Pd/Pa can be
Pd/Pa
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coronary pressure; other abbreviations as in Figures 3 and 4.



TABLE 8 Recommendations for Best Practices to Avoid Measurement Error With FFR/iFR

Cause of FFR/iFR
Measurement Error

Mechanism of FFR/iFR
Measurement Error

Recommendation for
Best Practice

Variability of the aortic pressure
transducer height

Varying the transducer height can alter
hydrostatic forces and influence
the Pa

Ensure that the transducer is fixed to the table at a
reference height at the level of the aortic root (5 cm
below the sternum)

Debris on the pressure wire
connector

Any blood or saline remnants on the
connector may interfere with the
Pd recording

Ensure the connector is kept dry and free from debris,
especially during the unpacking and flushing process
before calibration

Inappropriate pressure wire
calibration

Inappropriate calibration establishes
an incorrect 0 Pd

Ensure the pressure wire tubing is adequately filled with
saline and waitw60 s to have the wire completely and
stably wet. Calibration (establishing zero pressure) can
then be performed at this stage

Using guide catheters with side
holes

Pressure proximal to the stenosis is a
composite of coronary pressure
and aortic pressure (through the
side holes)

Avoid side-hole catheters in the first instance. If side-hole
catheter must be used, ensure the catheter is
disengaged from the ostium, while leaving the
pressure wire in the distal vessel during the
measurement

Contrast medium in the catheter Contrast medium can cause damping
of the aortic pressure waveform

Ensure the guiding catheter is adequately flushed with
saline before equalization

Not removing the needle
guidewire introducer prior to
FFR/iFR measurement

The space around the wire within the
introducer may introduce leak and
decrease aortic pressure (Pa) by
0–5 mmHg

Ensure the needle guidewire introducer is removed and the
O-ring tightly closed before all measurements, including
normalization, FFR, and iFR measurements, and the
verification for pressurewire drift at the end of a procedure

Excessive intubation of the guide
catheter in the coronary
ostium (particularly if ostial
disease is present)

Wedging of the guide catheter can
damp the proximal aortic pressure
signal

Ensure the aortic pressure trace is not damped and
optimize and stabilize guide catheter position if
possible. Alternatively, disengage from the ostium and
leave the pressure wire in the distal vessel during the
measurement (particularly if hyperemia is used)

Failure to check for pressure wire
drift

Pressure wire drift artifactually alters
the Pd value

Always check for (and document) the presence of pressure
wire drift at the end of any FFR/iFR measurement. If
drift > �2 mm Hg is identified, repeat the equalization
and FFR/iFR measurement.

Abbreviations as in Tables 3 and 7.

TABLE 9 FFR and iFR Ischemic Comparisons

Comparator
(Ref. #) N

FFR Diagnostic
Accuracy (%) or AUC

iFR Diagnostic Accuracy
(iFR) or AUC p Value

HSR (36) 51 92 92 NS

HSR (78) 120 82 89 <0.01

MPS (38) 85 63 62 NS

PET (40) 49 76 76 NS

CFR (42) 216 67 74 <0.01

PET (41) 115 70% 74 NS

AUC ¼ area under the curve; CFR ¼ coronary flow reserve; HSR ¼ hyperemic stenosis resistance;
NS ¼ not significant; PET ¼ positron emission tomography; other abbreviations as in Tables 1,
4, and 7.
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rationalized according to fundamental physiological
principles.

Regardless of the index used for coronary physio-
logical assessment, in real-world clinical populations
where intermediate severity lesions predominate,
physiological values tend to cluster around the cut-
point (Figure 8). Because reproducibility of repeated
FFR and iFR measurements for the same lesion is
excellent (34), this elevates the responsibility to
avoid potential measurement errors by adhering to
best clinical practice at all times (Table 8).

iFR VALIDATION

The path of iFR into contemporary clinical guidelines
(35) paralleled that of FFR. Following the initial
description of the iFR concept, a series of compara-
tive studies with other tests of myocardial ischemia
were performed. The ADVISE (Adenosine Vasodilator
Independent Stenosis Evaluation) and ADVISE Reg-
istry studies were the first to assess the diagnostic
accuracy of iFR against FFR as the ischemic reference
standard (4,22). Following these initial comparisons
of iFR to FFR, a series of further comparison studies
between iFR, FFR, and third-party arbiters of
ischemia were conducted (Table 9).
The CLARIFY study (Classification Accuracy of
Pressure-Only Ratios Against Indices Using Flow
Study) compared iFR and FFR to the hyperemic
stenosis resistance (HSR) index (36). The HSR is a
combined pressure and flow-velocity index that
essentially calculates the gradient of the pressure-
flow curve (37), as originally described by Gould
(26). In the CLARIFY study, iFR, FFR and iFR with
adenosine had equal diagnostic efficiency to match
an ischemic classification with HSR (both 92%, with
no significant difference between the 2 tests and no



TABLE 10 Summary Characteristics of Patient Outcome iFR Trials

Trial (Ref. #)
Total Study
Population

Randomized
to FFR

Randomized
to iFR FFR Value iFR Value

Stable
Angina ACS

Functionally Significant
Lesions by FFR, n (% of
Total Vessels Evaluated)

Functionally Significant
Lesions by iFR, n (% of
Total Vessels Evaluated)

DEFINE-FLAIR (5) 2,492 1,250 1,242 0.83 � 0.09 0.91 � 0.09 1,998 (80.2) 370 (14.9) 557 (34.6) 451 (28.6)

iFR SWEDEHEART (6) 2,037 1,019 1,018 0.82 � 0.10 0.91 � 0.10 1,264 (62.1) 773 (19.0) 528 (36.8) 457 (29.1)

Values are mean � SD or n (%) unless otherwise indicated.

ACS¼ acute coronary syndrome; DEFINE-FLAIR ¼ Functional Lesion Assessment of Intermediate Stenosis to Guide Revascularisation; iFR SWEDEHEART ¼ Evaluation of iFR vs FFR in Stable Angina or Acute
Coronary Syndrome; other abbreviations as in Tables 1 and 7.
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diagnostic advantage demonstrated with the admin-
istration of adenosine) (36). A second, larger study
similarly assessed iFR and FFR against HSR in 120
stenoses. In that study, iFR was found to have a
significantly higher classification match than FFR
(89% vs. 82%; p < 0.01) (10). A third study assessed
iFR and FFR against a comprehensive combined
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FIGURE 10 Deferral of Revascularization According to iFR and FFR
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gold standard for quantifying myocardial blood flow
(40). de Waard et al. (40) performed (H215O) PET
imaging in 34 patients with 49 intermediate coronary
stenoses, followed by invasive pressure-wire assess-
ment. Both iFR and FFR had a 76% classification
agreement with PET, and both had similar areas un-
der the curve (AUC) for receiver-operating charac-
teristic analysis (0.85 for FFR and 0.86 for iFR;
p ¼ 0.71) (40). Notably, both iFR and FFR had an
identical pattern of agreement and disagreement with
PET myocardial blood flow. A second, larger (13H3)
PET study has more recently been performed and
demonstrated similar classification agreement be-
tween iFR and FFR compared with PET-derived cor-
onary flow reserve (CFR) (74% for iFR and 70% for
FFR; p ¼ 0.36) across 115 left anterior descending
coronary artery stenoses (41). Finally, iFR and FFR
have been compared with invasive CFR (42). When
iFR, FFR, and CFR were measured in 216 stenoses, iFR
had closer agreement with CFR than with FFR, with a
statistically significant higher AUC (iFR 0.82 vs. FFR
0.72; p < 0.001) (42). Even when constrained to the
physiological range of 0.60 to 0.90, iFR maintained a
stronger association with CFR than with FFR (AUC:
0.78 vs. 0.59; p < 0.001) (42). Importantly, the find-
ings of this study suggest iFR has a closer association
than FFR with both hyperemic flow velocity and CFR.

EARLY INTEGRATION OF iFR INTO CLINICAL

PRACTICE: THE HYBRID STRATEGY

According to the hybrid strategy, iFR is measured in
all patients; if the iFR value is between 0.86 and 0.93,
then adenosine is administered to calculate FFR. This
method was noted to spare 60% to 70% of patients
from unnecessary adenosine administration (43,44).
When the iFR hybrid approach was first proposed, it
represented a practical solution to integrate the iFR
into clinical practice although lacking outcome data.
However, with multiple validation trials and 2 large
randomized clinical trials now demonstrating that
iFR is as at least as good as FFR to detect ischemia,
and with a noninferior outcome, there is no contem-
porary need for the iFR hybrid strategy.

iFR AND PATIENT OUTCOME DATA

The recently reported DEFINE-FLAIR (Functional
Lesion Assessment of Intermediate Stenosis to Guide
Revascularisation) (5) and iFR SWEDEHEART (Evalu-
ation of iFR vs FFR in Stable Angina or Acute Coro-
nary Syndrome) (6) trials addressed whether an
iFR-only guided approach using a single cutoff to
guide to revascularization was a safe and feasible
alternative to FFR. The rationale for such studies was
clear; namely, that an iFR-only approach would
permit the avoidance of adenosine, a potential
improvement in procedural time and costs, and a
reduction in adverse patient side effects. Although
the primary study objectives were to establish non-
inferiority of iFR to FFR for the invasive assessment
of stenoses of ambiguous hemodynamic severity,
the ultimate goal was to provide a further catalyst to
the generally low adoption of coronary physiology
techniques in clinical decision making.

The DEFINE-FLAIR study was a conventional pro-
spective, multicenter international, double-blinded
patient strategy study design (5). By contrast, the
iFR SWEDEHEART study adopted an open-label reg-
istry based randomized clinical trial design using
SCAR (the Swedish Coronary Angiography and An-
gioplasty Registry) for enrollment (6). In both trials,
patients with intermediate severity coronary artery
disease were randomly allocated in a 1:1 ratio to un-
dergo either iFR-guided or FFR-guided coronary
revascularization. Both stable patients and those



FIGURE 11 The Expected Behavior of Hyperemic and Resting Flow After

Removal of Stenosis
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with acute coronary syndrome (ACS) and nonculprit
vessels with intermediate disease were included
(Table 10). The primary endpoint across both trials
was harmonized as the 1-year risk of MACE, as a
composite of death from any cause, nonfatal MI, or
unplanned revascularization. The DEFINE-FLAIR and
iFR SWEDEHEART trials were designed to show the
noninferiority of iFR to FFR, with respective non-
inferiority margins of 3.4% and 3.2% for the differ-
ence in risk. These margins were more conservative
than the criteria typically set in the evaluation of
medical devices (45).

THE DEFINE-FLAIR TRIAL. The DEFINE-FLAIR trial
demonstrated that coronary revascularization guided
by iFR was noninferior to revascularization guided by
FFR with respect to the risk of MACE at 1 year. Among
a total study population of 2,492 patients, the primary
endpoint occurred in 78 of 1,148 patients (6.8%) in the
iFR group and in 83 of 1,182 patients (7.0%) in the FFR
group (difference in risk �0.2 percentage points; 95%
CI: �2.3 to 1.8; p < 0.001 for noninferiority; HR: 0.95;
95% CI: 0.68 to 1.33; p ¼ 0.78) (Figure 9).

Important secondary findings that favored iFR over
FFR were also elucidated. The number of patients
who had adverse procedural symptoms and clinical
signs was significantly lower in the iFR group than in
the FFR group (39 patients [3.1%] vs. 385 patients
[30.8%]; p < 0.001), and the median procedural time
was significantly shorter (40.5 min vs. 45.0 min;
p ¼ 0.001).

THE iFR SWEDEHEART TRIAL. The results of the iFR
SWEDEHEART trial were concordant with those of the
DEFINE-FLAIR trial. Namely, among patients with
stable angina or an ACS, an iFR-guided revasculari-
zation strategy was noninferior to an FFR-guided
revascularization strategy with respect to the rate of
MACE at 1 year. Among 2,037 patients randomized to
undergo revascularization guided by either iFR or
FFR, the primary endpoint event occurred in 68 of
1,012 patients (6.7%) in the iFR group and in 61 of
1007 (6.1%) in the FFR group (difference in event
rates 0.7%; 95% CI: �1.5 to 2.8%; p ¼ 0.007 for non-
inferiority; HR: 1.12; 95% CI: 0.79 to 1.58; p ¼ 0.53)
(Figure 9). Similar findings regarding adverse proce-
dural symptoms related to FFR measurement were
also reported, with chest discomfort during the pro-
cedure reported by 3.0% of the patients in the iFR
group and by 68.3% of the patients in the FFR group
(p < 0.001).

POOLED PATIENT-LEVEL META-ANALYSIS OF THE

DEFINE-FLAIR AND iFR SWEDEHEART STUDIES. Com-
bined analysis of the DEFINE-FLAIR and iFR SWE-
DEHEART trials provided outcome data for 4,529
patients with intermediate-severity coronary lesions
guided by coronary physiology in contemporary
clinical practice (46). The mean FFR value from the
combined datasets was 0.83 � 0.10. This was in
contrast to the study populations of the DEFER and
FAME studies, which were characterized by mean
FFR values of 0.71 and 0.75, respectively.

Aside from the demonstrated noninferiority of iFR-
versus FFR-guided revascularization (HR: 1.03; 95%
CI: 0.81 to 1.31; p ¼ 0.81), of particular importance was
the additional finding that deferral of myocardial
revascularization on the basis of pressure guidewire
interrogation was more frequently performed when
iFR was used, compared with FFR. Deferral from
revascularization occurred in 1,119 of 2,240 patients
(50.0%) in the pooled iFR group and in 1,015 of 2,246
(45.0%) in the pooled FFR group (p < 0.01). Crucially,
similarly low MACE rates at 1 year were demonstrated
regardless of iFR- or FFR-based deferral, indicating
that despite less frequent revascularization with iFR,
patient outcomes remained the same (Figure 10).

The lower deferral rate of revascularization with
FFR may, in part, reflect the use of the clinically
accepted 0.80 cutoff, rather than the 0.75 ischemic
cutoff or any value within the FFR gray zone.



FIGURE 12 Illustrative Case From the iFR Pullback Pilot Study
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However, uncertainties regarding the optimal FFR
cutoff value do not address the underlying physio-
logical differences between iFR and FFR, namely the
closer relationship between iFR and flow than be-
tween FFR and flow (42).

In summary, the results of the DEFINE-FLAIR and
iFR SWEDEHEART trials contribute significantly to
the field of coronary physiology. The data have led
thought leaders in the field of cardiology, themselves
removed from any potential biases, to conclude that
iFR may be the new evidence-based standard for
invasive evaluation of intermediate-severity coro-
nary lesions (Figure 9) (45). Furthermore, imperative
for the continued development of iFR-based physio-
logical applications, the trials also validated the use
of a single iFR 0.89 cutoff value, without resorting to
a diagnostic gray zone or hybrid approach.

THE FUTURE OF CORONARY PHYSIOLOGY:

FROM JUSTIFICATION TO GUIDANCE

It is widely recognized that under hyperemic condi-
tions, in the presence of tandem lesions or diffuse
disease, interrogation of the physiological severity
of an individual stenosis is not clinically possible
(47). These difficulties arise due to the cross-
communication between stenoses that exists under
hyperemia: hyperemic flow through one stenosis is
limited by the presence of another stenosis and vice
versa.



FIGURE 13 iFR Coregistration

(A) Example hemodynamic phenotypes identified by iFR coregistration. Three distinct patterns of pressure loss are demonstrated.

(B) Operators can plan their PCI approach with real-time calculation of expected post-PCI iFR results. Images courtesy of Dr. Hidetaka

Nishina, Tsukuba Medical Center Hospital, Tsukuba, Japan. Abbreviations as in Figures 4 and 9.
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Because resting flow is stable across almost the
entire range of stenosis severities (28), resting pres-
sure changes measured with iFR along the length of
a vessel are more predictable. In combination with
the ability to measure iFR on a beat-by-beat basis, a
high-fidelity resting pressure pullback trace can be
created where the hemodynamic significance of each
individual stenosis can be accurately mapped
and quantified. Furthermore, in contrast to hyper-
emic pressure measurements, removing a stenosis
does not alter resting flow profiles, meaning the iFR
pressure drops across any residual stenoses remain
unchanged (Figure 11).

PILOT STUDY OF THE iFR PULLBACK STUDY

AND VIRTUAL PCI TECHNOLOGY

In 2014, Nijjer et al. (48) reported the results of the
iFR Pullback study. This pilot study performed a
motorized iFR pullback recording in 29 patients with
tandem disease or diffuse atheroma. iFR pullback
analysis was performed offline, using customized
software to calculate the change or decrease in iFR
for every millimeter of the vessel. These data were
then plotted and overlaid onto a time-stamped
fluoroscopic run of the pullback recording to create
a coregistered physiological map of the vessel,
highlighting the drop(s) in iFR across individual
stenoses. “Virtual PCI” was then performed using
computer-aided simulations to model the hemody-
namic effect of removing a stenosis on the iFR Pull-
back trace to estimate a post-PCI iFR value (Figure 12).
This first-in-man study of iFR-based virtual PCI
demonstrated a high degree of accuracy for predicting
post-PCI iFR values without a significant systematic
bias (48). However, the need for offline analysis and
motorized pressure-wire pullback limited application
for real-world clinical practice.

iFR SCOUT: FULLY-INTEGRATED

VIRTUAL PCI PLANNING

Following proof of the iFR Pullback concept,
continued iFR algorithmic developments, combined
with real-time computer tracking of pressure-wire
movement, removed the remaining logistical bar-
riers to full clinical integration. Accordingly, it is now
possible to generate a fully integrated physiological
map of any coronary vessel acquired under manual
pullback that is coregistered with the angiogram in
real time (Figure 13).

The development of such a system permits instant
calculation of predicted post-PCI iFR values of any
number of interventional approaches. Operators are
able to evaluate the potential physiological benefit of
multiple different virtual stenting strategies at the
planning stage. Strategies that maximize the physio-
logical gain with a minimum of stenting may be



CENTRAL ILLUSTRATION Contemporary Considerations for Integrating Coronary Physiology Into
Clinical Decision Making
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hypothesized to improve outcomes over more
extensive stenting approaches. Conversely, the
technology also identifies situations where greater
numbers or longer stents are justified in order to
achieve acceptable hemodynamic improvement.
Importantly, angiographically diffuse disease can
now be documented physiologically. In such in-
stances, operators may be inclined to pursue alter-
native approaches to stenting, such as medical
therapy or coronary artery bypass grafting (CABG).
Taken together, fully integrated virtual PCI planning
with iFR marks an exciting new domain for coronary
physiology that heralds a shift away from simply the
justification of PCI toward the guidance of PCI.

FURTHER NEW FRONTIERS FOR

CORONARY PHYSIOLOGY

Aside from refinements of existing techniques to
optimally integrate coronary physiology into clinical
practice (Central Illustration), coronary physiology
continues to expand into new areas of clinical deci-
sion making. In particular, the application of coronary
physiology to define appropriate targets for bypass
grafting during CABG and to guide revascularization
of nonculprit vessels in ACS mark important new
frontiers for both FFR and iFR.
CORONARY PHYSIOLOGY TO GUIDE CABG. Despite
the wealth of physiological data to guide revascular-
ization with PCI, the scientific body of evidence for
using coronary physiology to guide CABG remains
scarce. In 1 small study (164 patients), Botman et al.
(49) demonstrated a significant increase in graft
failure at 1 year in FFR functionally nonsignificant
lesions compared with FFR functionally significant
lesions. However, the clinical relevance of the pri-
mary study endpoint was negated by the fact that
patients with patent or occluded bypass grafts on
nonsignificant lesions did not experience an excess of
angina or repeat interventions.

Data on the role of iFR to guide CABG are
currently lacking. However, given the closer associ-
ation between iFR and flow than between FFR and
flow, and the detrimental effect of native vessel
competitive flow on long-term graft patency, iFR
may be particularly suited to identifying appropriate
targets for bypass grafting. Prospective, randomized
trials with hard clinical endpoints are warranted
to address the relative merits of FFR- and/or iFR-
guided CABG.

CORONARY PHYSIOLOGY IN ACS. The application of
coronary physiology to bystander nonculprit disease
in ST-segment elevation myocardial infarction



FIGURE 14 Safety of Coronary Revascularization Deferral Based on iFR and FFR Measurements in ACS

HR 0.52 (0.27-1.00); p < 0.05

ACS 6.4%

SCD 3.4%

Months Since Randomization

Treated
2350

Deferred
2130

iFR
885

FFR
790

iFR
222

FFR
218

SCD
1675

ACS 
440

DEFINE-FLAIR + iFR-SWEDEHEART
4529

Pr
op

or
tio

n 
w

ith
 M

AC
E

0

0.00

1 2 3 4 5 6 7 8 9 10 11 12

FFR

0.05

0.10

ACS 5.4%

SCD 3.8%

iFR
HR 0.74 (0.38-1.43); p = 0.37

Months Since Randomization
0 1 2 3 4 5 6 7 8 9 10 11 12

1:1 Randomization to iFR or FFR

(Top) A total of 440 patients with ACS were deferred with iFR (n ¼ 218) or FFR (n ¼ 220) in the pooled analysis of DEFINE-FLAIR and iFR SWEDEHEART

trials. (Bottom) FFR was associated with a significantly worse outcome compared with deferred patients with stable angina (HR: 0.52; 95% CI: 0.27 to

1.00; p < 0.05). iFR yielded a similar outcome among deferred patients, regardless of clinical indication (HR: 0.74; 95% CI: 0.38 to 1.43; p ¼ 0.37).

SCD ¼ stable coronary disease; other abbreviations as in Figures 3, 4, and 10.
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(STEMI) has been most studied with FFR. The open-
label DANAMI-3 PRIMULTI trial (Third Danish Study
of Optimal Acute Treatment of Patients With STEMI:
Primary PCI in Multivessel Disease) (50) studied the
clinical outcome of patients with STEMI treated with
FFR-guided complete revascularization versus treat-
ment of the infarct-related artery only. A total of 627
patients with $1 clinically significant coronary ste-
nosis after successful recanalization of the infarct-
related artery were randomized to either no further
invasive treatment (n ¼ 313) or complete FFR-guided
revascularization (n ¼ 314) before discharge (occur-
ring at a median of 2 days [interquartile range:
2 to 4 days]) post-index procedure). Patients were
followed up for a median of 27 months (interquartile
range: 12 to 44 months) and observed for develop-
ment of the composite primary study endpoint of
all-cause mortality, nonfatal reinfarction, and
ischemia-driven revascularization of lesions in non–
infarct-related arteries. The primary endpoint was
significantly reduced in the FFR complete revascu-
larization arm, with a HR of 0.56; 95% CI: 0.38 to 0.83;
p ¼ 0.004. Similar to the open-label FAME 2 trial, the
primary endpoint in the DANAMI-3 PRIMULTI trial
was driven by a large reduction in the need for repeat
revascularizations, with no difference between the
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groups noted in all-cause mortality or nonfatal
reinfarction.

The recently reported open-label COMPARE-
ACUTE (Comparison Between FFR Guided Revascu-
larization Versus Conventional Strategy in Acute
STEMI Patients With MVD) trial (51) was similar in
design to the DANAMI-3 PRIMULTI trial, except
FFR measurements were performed at the time of
the primary PCI procedure, rather than staged. Pa-
tients were randomized in a 1:2 fashion to undergo
FFR-guided complete revascularization of non–
infarct-related coronary arteries (n ¼ 295) or no
revascularization of non–infarct-related coronary
arteries (n ¼ 590). The primary study endpoint was a
composite of death from any cause, nonfatal MI,
revascularization, and cerebrovascular events at
12 months. FFR-guided complete revascularization
at the time of the index procedure was associated
with a significant reduction in the primary endpoint,
with a hazard ratio of 0.35 (95% CI: 0.22 to 0.55;
p < 0.001), driven primarily by a reduction in subse-
quent revascularizations. Although a net beneficial
outcome was clearly demonstrated, it is important
to note that the physiological assessment of non–
infarct-related vessels is not a benign process. Serious
adverse events occurred in 0.2% of the COMPARE-
ACUTE study population, including the dissection of
a coronary artery with subsequent vessel occlusion,
MI, and death (51).

Both the DANAMI-3 PRIMULTI and COMPARE
ACUTE trials demonstrated the applicability and
general safety of FFR to guide complete revasculari-
zation in STEMI. However, due to the lack of a
physiological comparator arm, the full potential of
coronary physiology applied to ACS cannot be eluci-
dated from these data. In contrast to stable angina,
ACS can unpredictably upset the microvascular
milieu by a variety of mechanisms, including intra-
myocardial hemorrhage and microvascular obstruc-
tion. These factors have been demonstrated to limit
the attainment of “maximal” hyperemia (52). In such
situations, the true hemodynamic significance of a
stenosis may be underestimated by FFR. In accor-
dance with this theory, in a study of the long-term
prognosis of deferred ACS lesions based on non-
ischemic FFR values, an upward revision of the FFR
cutpoint from 0.75 to 0.84 was demonstrated to pro-
vide an almost 2-fold reduction in the annualized
MACE rate (53).

Pooled analysis from the DEFINE-FLAIR and iFR
SWEDEHEART studies provides the first data
comparing the relative performance of FFR versus
iFR in the physiological assessment of nonculprit
vessels in 440 patients with ACS. Among patients
with ACS, those deferred using FFR were associated
with a significantly worse outcome compared with
those deferred with stable angina (HR: 0.52; 95% CI:
0.27 to 1.00; p < 0.05). However, patients deferred
using iFR yielded similar outcomes among deferred
patients, regardless of clinical presentation (HR: 0.74;
95% CI: 0.38 to 1.43; p ¼ 0.37) (Figure 14). These data
are suggestive that FFR may be an inferior prognostic
tool in comparison with iFR for deferring nonculprit
lesions in patients with ACS.

CONCLUSIONS

Recently reported clinical trials increase the amount
of coronary physiological data 4-fold, more than
double the available patient outcome data for FFR,
and provide the first study of decision making for iFR-
guided revascularization. Currently, FFR remains the
legacy coronary physiology index in common daily
practice. However, the contemporary, largescale body
of evidence that supports the use of iFR as an alter-
native to FFR challenges this legacy, particularly as
iFR is quicker and spares the patient the unpleasant
side effects of adenosine.

Importantly, emerging data support that iFR may
be a superior prognostic tool in comparison with FFR
for deferring nonculprit lesions in patients with ACS.
In this new era of physiological lesion assessment, the
patient regains the central focus of attention, as prior
debates over ischemia detection are superseded by
clinical events as the ultimate gold standard test
against which iFR and FFR modalities are judged.

The evolving future of iFR involves a change in the
mindset of what coronary physiology as a modality is
capable of. Specifically, real-time coregistered iFR
pressure mapping with virtual PCI capability heralds
a new paradigm for functional lesion assessment,
where physiology is used to both justify and guide
optimal coronary intervention.
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