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Abstract 
The junction between the leading edge and wing box components of natural laminar flow wings 
presents a feature to the flow that can potentially enhance the growth of transition causing Tollmein 
Schlichting (TS) instabilities leading to a significant forward movement of transition. Even when a 
filler is applied to the gap between the components, subsequent curing will lead to a shallow cavity 
formed by the filler surface. This paper describes a detailed experimental and numerical study of 
flow over realistic filler shapes under conditions representative of a natural laminar flow wing. Wind 
tunnel results show that for the width of gap examined there is an initial forward movement of 
transition by a quite significant amount for very shallow filled gaps but essentially no further 
movement as the depth is increased. PSE based stability analysis reveals that there is a 
destabilisation of modes near the gap. The degree of destabilisation appears to plateau with 
increasing depth due to recirculation of flow inside the gap which maintains an almost constant 
effective depth. Compensating stabilisation soon after the gap means however that there is very 
little lasting effect of the gap on the magnitude of the transition causing modes further downstream 
and stability analysis suggests there is little movement in transition as seen beyond a certain depth. 
The initial movement observed in the tunnel tests may be due to enhanced receptivity to TS waves 
at the site of the gap which is not captured by the stability analysis. 
 
Introduction 
Since NLF wings have low sweep the interaction of TS instabilities with the gap region and its effect 
on transition can be reasonably well captured by a zero sweep configuration. In fact a more compact 
representation of the flow can be provided by a ring-wing configuration provided the diameter of 
the annulus is large compared to the boundary layer thickness. Such a configuration has been 
designed by Airbus for manufacture by ARA and subsequent testing in their transonic wind-tunnel. 
The configuration consists of three segments, in two of which an insert is machined to represent an 
azimuthally running groove of representative width L and at a representative chord location with a 
profile corresponding to a realistic filler shape. The third segment is left clean to provide a reference 
point. Appropriately positioned pressure taps, hot films and coatings of temperature sensitive paint 
have provided detailed pressure, velocity fluctuation and transition front data. Three separate runs 
enabled 6 depths of filler profile to be tested. Computational studies have been carried out at Airbus 
Group Innovations (AGI) and Imperial College (IC) using the IC PSE based stability method and a 
recently developed RANS boundary layer extraction tool for the base flow. Numerical results have 
been able to reproduce and explain the lack of movement in transition seen in tunnel tests for 
deeper gaps but not the initial movement seen for very shallow gaps. However there are indications 
that the initial movement may be due to a receptivity mechanism not captured by the stability 
calculations. In the first part of this paper a description is given of the wind tunnel tests and the 
measurements that have been made. The numerical approach is then described and a comparison 
made between the numerical and experimental results. A possible explanation is offered in terms of 
receptivity for the observed initial movement in transition for shallow depths followed by little 
further movement as the depth is increased. The paper ends with some conclusions and 
recommendations for future work. 
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Experimental Set-up 
 
Wind Tunnel 
The ARA transonic wind tunnel is a closed circuit, continuous operation porous wall tunnel, with a 
Mach number range up to 1.4. The rectangular test section is 2.74m x 2.44m, with a maximum wall 
porosity of 22μμ. Stagnation pressure can be varied from 0.8 to 1.2 bar, although the tunnel was 
operated at 1 bar for these tests. The TWT has been qualified for NLF testing during a previous 
research programme, SAWoF [1]. 
 
Model Design 
The model used for these tests was a ring wing configuration, as shown in figure 1. The model was 
designed to be circumferentially uniform, with an identical aerofoil section at all points around the 
circumference, maximising the measurement area whilst eliminating the end effects of a panel wing. 
The flow-field around the circumference was effectively 2D since the ratio of model diameter to 
boundary layer thickness was very large. The aerofoil was a natural laminar flow section derived by 
Airbus. 
The model was divided into 3 segments, with a full set of instrumentation in each segment. The 
effect of 3 different surface imperfections could therefore be measured in each tunnel run. Features 
designed to model various surface imperfections were installed at a representative chord-wise 
location for a leading edge/wing box junction. These consisted of 6 groove features. Each groove 
feature consisted of a shallow channel of fixed width (L) and with a radius on the bottom corners. 
The grooves depths (D) ranged over the depth to width rations D/L=0.35x10-2 to D/L=10.55x10-2. 

 
 

 

 

 

 

 
Figure 1: Ring wing model installed in the ARA TWT 

Instrumentation 
The model was designed to provide measurements of transition and surface pressure distributions 
as shown in figure 2. Static pressures tappings were installed in 3 rows, one on each of the 3 
segments. The pressures in each row were aligned to ensure each tapping was unaffected by any 
turbulent wedge that might have originated from the upstream tapping. 
Twelve Dantec hot films were installed on the model in a row on each segment of the model, i.e.36 
in total. These were also aligned to ensure each hot film was unaffected by any turbulent wedge that 
might have originated from the upstream hot film. 
Transition was mainly determined from measurements of surface temperature during a step 
increase in freestream temperature using both Temperature Sensitive Paint (TSP) and Infra-Red (IR) 
thermography. The technique requires an insulating layer which on this model consisted of a 4mm 



Royal Aeronautical Society Applied Aerodynamics Conference, 19-21 July 2016, Bristol (UK) 

thick panel covering a large area of the surface of each segment. The panels, consisting of a 
thermoplastic polymer, were machined to conform exactly to the required surface profile. 
TSP data were processed to determine transition location by first calculating the ratio of hot to cold 
images before and after the freestream temperature step. Transition onset and completion were 
defined for this study as the maximum and minimum of the second order derivative of intensity ratio 
with respect to chord. 
 

 

 

 

 

 

 

Figure 2: Installed measurement system 

Test Programme 
Three configurations were tested, each with 3 different features, one in each segment. The 
configurations were tested with one of the segments consisting of a clean profile with no features to 
provide a consistent baseline. The tests were conducted at a range of subsonic and transonic Mach 
numbers at zero incidence and sideslip throughout. 

Results 
The pressure measurements showed that a consistent pressure distribution was achieved 
throughout the test. Transition onset was calculated using IR, TSP and hot films.  An example of a 
temperature sensitive paint result after calculating the hot/cold ratio and displaying the slice 
locations is shown in figure 3 (left). Also in this figure it is shown how the intensity ratio distribution 
is used to determine transition location (right). 
 

 

 

 

 

 

 

Figure 3: Example of TSP data (left) and use of TSP intensity ratio to determine transition (right) 
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In figure 4 (left) is an example of a infra-red camera image that can be used to reveal transition 
fronts including turbulent wedges such as seen near the opt of the image. In figure 4 (right) is a 
power spectral density composed from hot film data. These will be examined in more detail below. 

 

 

 

 

 

 

 

Figure 4: Infra-red camera image (left) and example of PSD of hot film data (right) 

Finally, initial results on the effect of groove depth on transition position are shown in figure 5. For 
this the average of 3 to 5 locations on each segment corresponding to groove depths varying by no 
more than +/-5 microns has been used. The standard deviation indicates the transition position is 
accurate to within +/-1% chord. These show a marked forward movement of transition of chord for a 
groove of depth D/L=2x10-2 compared to the clean wing. As groove depth increases further, 
transition is relatively constant with evidence of a small rearward movement at a depth D/L=6x10-2. 

 

 

 

 

 

 

 

 

 

 

Figure 5: Variation of averaged transition locations with gap depth for each of three Mach numbers 
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Numerical Studies 
 
Flow conditions for numerical study 
Flow computations were performed in advance of the wind-tunnel test and were used to guide the 
choice of tunnel conditions as well as the range of filler depths for the inserts. The computations 
were performed at the highest of the three Mach numbers in the test and at a Reynolds number per 
metre of Re=12.32x106. Transition was fixed a little aft of the most downstream transition location.  
 
Computation of Base Flow 
RANS computations were performed with the DLR tau solver and SOLAR meshing. Initial 
computations at Airbus were for a fully 3d clean configuration. Work at AGI was then directed 
towards developing a new mesh which could reproduce the Airbus results for a clean configuration 
but would also admit deformations in the surface to represent the filler configurations. The 
challenge in the re-meshing work was to adequately resolve the very small scales of the filled gap 
(small chord-wise extent, L, and depth ratio as little as D/L=1.2x10-2) whilst not ending up over 
resolving the remainder of the surface for the sake of solution quality. Figure 6 (left) shows the final 
3d meshing strategy that was adopted for the surface meshing. A span-wise refinement of L 
together with a chord-wise refinement of 3L/40 was adopted over a T shaped region. A zone of 
gradual de-refinement was adopted around these regions to match the background level of 
resolution.  
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Surface mesh show regions of refinement (left) and detail showing exponential depression 
(right) 
 
This resulted in a half-mesh with 30 million cells. The mesh could then be deformed to represent a 
simple exponential type filler as shown in figure 6 (right) which was used for numerical studies in 
advance of the actual filler profiles being defined. Acceptable RANS solutions for a range of filler 
depths were obtained and some preliminary boundary layer extraction and stability analysis was 
performed to demonstrate the method. However the actual filler profiles that were finally adopted 
for the tunnel tests were considerably more demanding than the simple exponential profiles. Being 
representative of what happens to real filler they were characterised by a much sharper descent 
from the rim to the base of the depressed region with the base being flat bottomed. This 
necessitated the resolution of much finer scales in the vicinity of the rims. Attempts to achieve this 
in a fully 3d mesh resulted in unmanageably large meshes and it was necessary to rethink the 
meshing strategy. It was decided to represent the flow through an equivalent axisymmetric 
configuration that produced the same boundary layer development on the outer surface. 
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Figure 7 Axisymmetric mesh for ring wing equivalent congfiguration 
 
Starting from the sting plus aerofoil from a 2d section of the original 3d configuration the sting 
diameter was increased by a factor of 1.9 to produce an axisymmetric mesh (figure 7) with the 
required blockage effect to produce an attachment line and cp distribution closely corresponding to 
that of the full 3d configuration with vanes etc. N factors calculated with BL2d and CoDS showed 
good agreement with those obtained for the 3d configuration as seen in figure 8. The use of an 
axisymmetric mesh with 1 cell in the azimuthal direction enabled chord-wise refinement down to 
about L/40 to be achieved i.e. 40 cells across the filled gap. 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: N factor envelope for axisymmetric configuration compared to Airbus 3d configuration 
(blue), with axisymmetric results before (green) and after (red) adjusting blockage. 
 
The mesh refinement together with pressure coefficients obtained for a particular depths are shown 
in figure 9. It can be seen that there is a strong adverse pressure gradient over the gap followed by a 
pressure recovery. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: Pressure coefficient with and without gap (left) for realistic filler shape. Details of mesh 
(right) 
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Extraction of base flow 
A common approach to computing the base flow is to use surface pressure from a RANS solution to 
provide edge velocity conditions for a more accurate and highly resolved solution of the boundary 
layer equations in the laminar boundary layer region. This approach could not be adopted here for 
anything other than the clean configuration because of the presence of flow separation over the 
filled gap which cannot be captured by solving the boundary layer equations. Instead use was made 
of a capability that has been developed at AGI and Imperial by Thomas [2] to extract the necessary 
boundary layer profile data directly from the RANS solution. This includes both the velocity and 
velocity gradient data that is required in order perform a stability analysis based on solutions of the 
parabolised stability equations (PSE). In figure 10 it can be seen from the REBL data that the flow 
recirculates in the cavity formed by the filled gaps forming a virtual floor which it is suggested 
reduces the effective depth of deeper cavities.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: REBL data from RANS solutions for different filler depths showing reversed flow region and 
almost constant depth virtual floor. 
 
Stability Analysis 
Preliminary analysis at Airbus for design of the ring wing geometry had been through solution of the 
Orr-Sommerfeld equations (OSE) to determine growth rates for TS modes. Spatial integration of 
these growth rates gives a relative amplitude eN for each mode at every location from which an 
envelope of maximum N factors can be determined. The OSE solution is a local approach based on a 
parallel flow assumption that is perfectly valid for the clean configuration. Thus a similar OSE based 
approach was adopted at AGI for checking that solutions on its new meshes resulted in similar N 
factor envelopes to those of Airbus as shown previously in figure 8. However for the purpose of 
determining the effect of the filled gaps on the growth on TS modes it was anticipated that the 
parallel flow assumption would not be valid in the vicinity of the gap where the flow separates. Thus 
the analysis at AGI for the parametric studies was based on solution of the parabolised stability 
equations (PSE) – a non-local approach that arises from considering weakly non-parallel flow (see 
Herbert [3]). For this purpose the CoPSE (compressible PSE) solver of Mughal was used [4]. 
Figures 11, 12 and 13 show the results of the stability analysis for the clean configuration and for 
filled gaps ranging in depth from D/L=1.2x10-2 to D/L=7.5x10-2. Unstable modes ranging in frequency 
from below 10kHz to 40kHz have been included in the analysis. As can be seen for the clean 
configuration, figure 11 (top), there is an upstream onset of instability of the highest frequency 
modes with progressively lower frequency modes becoming unstable and dominating downstream  
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Figure 11: Envelope of N factors calculated for a clean wing (top) and gaps of depth D/L=0.012 
(middle) and D/L =0.020 (bottom). Hot film locations are indicated by black arrows and the gap by a 
red arrow. Orange stars indicate transition location using Ncrit for the clean configuration and red 
stars indicate transition locations based on an Ncrit for a configuration with gap of depth D/L=0.02.  
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Figure 12: Envelope of N factors calculated for gaps of depth D/L=0.029 (top), D/L=0.042 (middle) 
and D/L=0.058 (bottom). Hot film locations are indicated by black arrows and the gap by a red arrow. 
Orange stars indicate transition location using Ncrit for the clean configuration and red stars indicate 
transition locations based on an Ncrit for a configuration with gap of depth D/L=0.02.  
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Figure 13: Envelope of N factors calculated for gap of depth D/L=0.075 (top). Hot film locations are 
indicated by black arrows and the gap by a red arrow. Orange stars indicate transition location using 
Ncrit for the clean configuration and red stars indicate transition locations based on an Ncrit for a 
configuration with gap of depth D/L=0.02. 
 
before stabilising again as the boundary layer thickens. For 18kHz and below the modes do not 
decay completely but undergo a further phase of instability starting at around hot film 8 or 9 for 
18kHz. As the frequency reduces further the preceding region of stabilisation (decay in N factor) 
becomes less pronounced until for 16kHz and below there is no stabilisation at all. Experimental 
data indicates transition occurs at the location of the yellow star from which a critical N factor can be 
determined for a transition causing mode of around 10 kHz. 
As the depth of the filled gap is increased from ratio D/L=1.2x10-2 to D/L=7.5x10-2, figure 11 (middle) 
- figure13, it is seen that there is a rapid growth in all modes over the gap which results in a sudden 
increase in N factor with the magnitude of the increase getting larger as the depth increases (except 
for the deepest gap, D/L=7.5x10-2, where the results indicate a smaller increase compared to 
D/L=5.8x10-2). For the higher frequency modes this rapid growth is then followed by more moderate 
growth and decay following a similar pattern to the clean configuration. For the lower frequency 
modes in the 10-15 kHz range it is seen that as the depth of the filled gap is increased beyond 
D/L=7.5x10-2 the region of rapid growth is increasingly offset by a more extended region of decay so 
that by hot film 3 there is little (for D/L=7.5x10-2) or no (for D/L=7.5x10-2) increase in N factor for 
these modes. Subsequent evolution is similar to that for the clean configuration and the results 
would imply very little movement in transition arising from the passage of TS modes across the gap. 
This does not exclude the possibility of movement due to a receptivity mechanism in which new 
modes are introduced through the interaction of the gap with the acoustic environment. 
 
Validation of numerical results against experimental data 
 
Comparison of results 
A comparison of the experimental and computational surface pressure coefficient in figure 14 
reveals that they are in good agreement in the important regions of the outer surface where the TS 
modes are developing. In figure 15 the experimentally determined transition locations of figure 5 
has been reproduced and the numerically determined transition locations (indicated by orange and 
red starts) have been added. These transition locations correspond to the orange and red stars in 
the PSE plots. Orange stars are based on the assumption that the critical N factor is constant at its 
clean value throughout whereas red stars are based on the assumption that the critical N factor 

N
crit

(clean) 

N
crit

(D/L=0.02) 

N 



Royal Aeronautical Society Applied Aerodynamics Conference, 19-21 July 2016, Bristol (UK) 

reduces initially with depth (perhaps due to receptivity at the gap) but then is constant at its value 
for D/L= 2.0x10-2. Use of the latter N factor assumes that the critical N factor is constant i.e. there is 
no increase in receptivity effects arising from the gap as the depth increases further. The numerical 
locations are in reasonable agreement with experiment except at D/L=7.5x10-2 where there is a 
forward movement in the numerical transition compared to a backward movement in the 
experimental transition. Setting instead a critical N factor based on the clean configuration, it is 
found that the stability computations are completely unable to predict the initial rapid forward 
movement with depth of the gap. Instead it is seen that there is no movement at all in the transition 
location as indicated by the orange starts in the PSE plots and in figure 15. Thus using the critical N 
factor at D/L=2.0x10-2, the numerical computations seem to have been reasonably accurate in 
predicting the insensitivity to filler depth but the shift compared to the clean configuration implies 
there is some additional physics that is not been captured by the stability calculations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14:  Comparison of experimental and numerical pressure coefficient for clean configuration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15:  Comparison of experimental and numerical transition locations for various gap depths. 
Yellow and red stars are numerical transition based on critical N factors for clean and D/L=2x10-2 
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More insights can be gleaned by examining the hot film data. The location of the hot film sensors is 
indicated by the arrows in the N factor plots. What stands out from comparing the hot film data for 
the clean configuration with that for D/L=1.2x10-2 and particularly with that for greater depths is the 
difference in the dominant frequency just before transition. For the clean configuration a peak in the 
PSD is seen at around 9 kHz at the location of hot film 9 where the rise in the PSD at higher  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16:  Comparison of experimental and numerical pressure coefficient for clean configuration 
(left)  
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Figure 17:  Comparison of experimental and numerical pressure coefficient for clean configuration 
(left) 
 
frequencies indicates the onset of transition. For D/L=1.2x10-2 this peak occurs at a slightly higher 
frequency, closer to 10 kHz but for D/L=2.9x10-2 the peak occurs at a markedly higher frequency of 
about 12-13 kHz at the location of hot film 7 for transition onset. The results for D/L=4.4x10-2 (not 
shown) with an early transition to turbulence suggest the hot film was in a turbulent wedge and 
therefore should be discounted. For D/L=5.8x10-2the peak occurs at 13-14 kHz at the location of hot 
film 6 whilst for D/L=7.3x10-2 the peak occurs at 12-13 kHz at a location around hot film 7. Here the 
result for D/L=5.6x10-2 indicates a forward movement rather than the rearward movement from TSP 
above. 
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Explanation for observed results 
The dominance of a 9 kHz mode at the experimental transition location for the clean configuration is 
what is observed in the stability analysis, figure 16 (top). Also the dominance of a mode near 12kHz 
between hot films 6 and 7 for different depth filled gaps is also what is observed in figure 16 
(bottom) to figure 17. What appears to be happening is there is a change in N factor for certain 
modes around 12 kHz which arises from the introduction of the filled gaps and this change in N 
factor remains more or less constant for filled gaps beyond depth ratio D/L=2.9x10-2. One 
explanation is that the gap is acting as a receptivity site introducing TS forcing over a range of 
frequencies. Newly introduced modes will only be significant compared to existing modes of the 
same frequency if the existing modes are of small amplitude and hence N factor. The newly 
introduced modes should also not be too far upstream of the neutral stability point for their 
frequency otherwise they will be heavily damped before they can grow. Thus the increment in N 
factor due to receptivity will be greatest for unstable modes which are near their initial amplitude 
(i.e. N factor close to zero) just upstream of the gap. Examination of figure 11-figure 13 reveals that 
this is indeed the case for modes of around 12 kHz for which the increment in N factor due to 
receptivity must be similar to the difference in critical N factors for clean and gap with D/L=2x10-2. 
The fact that the strength of the receptivity mechanism become almost invariant with filler depth 
can likewise be attributed to the recirculation inside the cavities which results in a virtual floor of 
zero x velocity that is at a near constant depth below the cavity opening as seen in figure 10. 
 
Conclusions and further work 
This study has shown, somewhat contrary to expectations, that for a filled gap representative of the 
junctions between leading edge and wingbox components on a natural laminar flow wing for 
conditions similar to cruise there is a marked forward movement in transition for gaps as shallow as 
D/L=2.0x10-2. However as the depth of the gap increases beyond this point there is no further 
movement. Stability calculations based on PSE predict no further movement beyond a certain depth 
but completely fail to predict the initial movement. It is suggested that this may result from the 
introduction of new modes at the gap through a receptivity mechansim. The transition causing 
frequencies at around 12 kHz are of small N factor at the gap and thus would be susceptable to such 
augmentation. The PSE computations have indicated that there is almost no lasting downstream 
effect of the filled gaps on the growth of transition causing modes. Although they do grow in passing 
over the gap they subsequenly decay before following a similar growth further downstream to that 
seen for the clean configuration and no lasting mark is left from passage over the gap.  
Future work should be targetted at better understanding and predicting a possible receptivity 
mechansim. The acoustic environment in the tunnel will be very different from that in flight and 
receptivity effects may be very different under flight conditions. Further work should also be 
directed towards understanding the optimal gap width. Initial studies have indicated much greater 
instability at larger depths when the gap width is increased and the saturation effect due to 
recirculation in the cavity formed by the gap is no longer so prevelant. Work should also be directed 
towards understanding the effect of unequal heights i.e. a step as well as a gap. 
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Abstract
This paper describes work carried out within the European Union (EU)-Russia Buterfli project to look at the control of
transition-causing ‘‘target’’ stationary cross flow vortices, by the use of distributed plasma actuation to generate sub-
dominant ‘‘killer’’ modes. The objective is to use the ‘‘killer’’ modes to control the ‘‘target’’ modes through a non-linear
stabilizing mechanism. The numerical modelling and results are compared to experimental studies performed at the
TsAGI T124 tunnel for a swept plate subject to a favorable pressure gradient flow. A mathematical model for the
actuator developed at TsAGI was implemented in a linearized Navier–Stokes (LNS) solver and used to model and hence
predict ‘‘killer’’ mode amplitudes at a measurement plane in the experiment. The LNS analysis shows good agreement
with experiment, and the results are used as input for non-linear parabolized stability equation (PSE) analysis to predict
the effect of these modes on crossflow transition. Whilst the numerical model indicates a delay in transition, experi-
mental results indicated an advance in transition rather than delay. This was determined to be due to actuator-induced
unsteadiness arising in the experiment, resulting in the generation of travelling crossflow disturbances which tended to
obscure and thus dominate the plasma stabilized stationary disturbances.
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Introduction

The laminar-turbulent transition process over a swept
transport wing under cruise conditions is dominated
near the leading edge by crossflow instability.
A common approach to controlling such disturbances
in laminar wing design involves modifying the base
flow of the boundary layer through suction to make
it less susceptible to the growth of these instabilities.
The system to achieve this incurs a drag penalty due
to weight and actuation energy and raises reliability
issues due to the complex network of pipes and pumps
required. An alternative approach for controlling
laminar-turbulent transition at the leading edge is
through the promotion of ‘‘killer’’ crossflow modes
that retard the growth of the most unstable ‘‘target’’
transition-causing modes via nonlinear interaction.
This can be realized through excitation of the
‘‘killer’’ modes with distributed roughness elements
or through an active approach involving spanwise
periodic forcing, for example with plasmas, heat
spots or blowing. Such active approaches for introdu-
cing disturbances require less energy compared to

approaches involving base flow modification because
they involve only small perturbations to the flow over
a much more limited chord-wise extent. Furthermore,
such a dynamic method offers the possibility of vary-
ing the wavelength of the control perturbations to
match the changing stability properties of the bound-
ary layer under variations in cruise conditions that
occur during a typical aircraft flight. Plasma actuators
appear to be well suited to this role, offering the bene-
fit of rapid response time and flexibility and are cap-
able of producing the small velocity amplitudes that
are required.

The viability of this approach has been explored in
the European Union (EU)-Russia ‘‘Buterfli’’ project.
In this project, a distributed dielectric barrier
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discharge (DBD) plasma actuator was designed and
built by the Joint Institute for High Temperatures
(JIHT) in Russia and incorporated into a swept
plate model at TsAGI1 for testing in the T124 low
turbulence tunnel under conditions where transition
occurs due to crossflow instability. The effectiveness
of the control through plasma actuation has been
explored through the tunnel test and also through
numerical simulations, the results of which are
reported in this paper. This involves implementation
of an actuator body force model developed by TsAGI
and JIHT, as a field source term in a linearized
Navier–Stokes (LNS) code.2 Initial ‘‘killer’’ mode
amplitudes determined with the LNS solver are used
to set upstream ‘‘linear regime’’ conditions for the
nonlinear parabolized stability equations (PSE, see
Herbert3). Through solution of the PSE, the growth
of the primary ‘‘killer’’ crossflow disturbance growth
along with the transition-causing mode and their
nonlinear interactions are studied to determine the
possible transition delay achievable downstream.
Although the predicted ‘‘killer’’ modes’ evolution
match experimental downstream plane measurements,
the predicted delay in transition from the numerical
study does not correspond with experiment due to
additional unsteady effects arising from the plasma
actuation device.

The DBD actuator creates a wall jet flow effect,
which with careful tuning of the plasma force distri-
bution, can be confined to cause maximum effect
within the viscous boundary layer. The wall jet
arises with the introduction of a body force in the
fluid, whereby the plasma actuator enhances the
local fluid momentum.4 Plasma actuation produces a
very concentrated and thus localized flow modifica-
tion. Beyond the DBD placement region, the
plasma-induced force reduces in magnitude fairly rap-
idly. Such extreme modifications to the basic field
have been modelled until now by solutions to non-
linear boundary layer, direct Navier–Stokes (DNS)
or Reynolds averaged Navier–Stokes (RANS)
equations.

The physics of plasma actuation is a very complex
problem, due to the multi-time and multi-spatial
scales arising and in general requires precise numerical
modelling of the convection-diffusion dynamics with
the added complication of stiffness in the plasma reac-
tion/ionization equations. This multi spatial and time
modelling problem involves many stages (note
Table 1, taken from Boeuf et al.,5 see also Regis6).
The detailed analysis of Vidmar and Stalder7 indicates
electron temperatures ranging between 1000K and
10,000K, with electron velocities of the order of
105 to 106m/s (see Mertz & Corke),8 while fluid vel-
ocity is typically of order of 100m/s. Complete
numerical solutions of the fully coupled plasma-fluid
dynamics in a consistent manner, in addition to
Vidmar and Stalder,7 are the works of Unfer and
Boeuf,9 Singh and Roy10 and Orlov11 among others.

An alternative route has been that based on the
electrostatic body force approximation (proposed by
Shyy et al.12) and based on the key assumption, as
alluded to above, that the many processes involved
in the physics of the actuator operation (such as
charge re-distribution) occur across widely separated
time and spatial scales, so that the plasma generation
may be treated in a quasi-steady manner. If one could
directly implement an adequate approximation of the
electrodynamic force in the Navier–Stokes equations,
significant computational cost savings could be
obtained for solutions of the complete plasma-fluid
coupled equations.

The modelling challenge is thus that of developing
a body-force model that captures the true induced
force produced by the plasma hardware under flight
or experimental operating conditions. A common
practice is that of making measurements of the
plasma actuator force vector under quiescent condi-
tions and then applying the experimentally captured
data in non-quiescent test conditions (see Serpieri
et al.13).

The plasma actuator body force f, based on experi-
ments and comparison with full and detailed numer-
ical simulations of the plasma generation process, was
found to be well approximated by Maxwell’s electro-
static force equations. Mertz and Corke,8 Orlov11 and
others solve the Poisson equation numerically to com-
pute the electric potential distribution and thus the
body force components. Shyy et al.12 proposed a
simple empirical model to characterise the DBD actu-
ator, with the assumption that the plasma only arises
above the actuator, in a triangular-shaped region with
a linear decrease of the field strength from the max-
imum point, the field strength being maximal at the
minimum separation between electrodes. The effect of
increasing voltage was then modelled by a re-scaling
of the triangular domain with voltage increments.

Table 1. Scales involved in DBD actuator modelling (Boeuf
et al.,5 more detailed analysis of the disparate time and spatial
scales is in Unfer and Boeuf9).

Temporal scales Seconds

Maxwell relaxation time 10!12

CFL time – electrons 10!12

CFL time – ions 10!10

Plasma formation 10!9

Voltage generator 10!4

Ambipolar diffusion 10!4

Generated flow 10!2

Spatial scales Metres

Sheath 10!6

Plasma dimension 10!3

CFL 10!1

Generated flow 10!1
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This simple model has been used in a number of
Euler, DNS and RANS solvers14 to corroborate the
flow control effects arising from the plasma actuator
and with experimental verification. This simplistic
expression of course requires very fine tuning and fit-
ting to experiment, otherwise the total DBD force
acting on the flow is erroneous at higher and off
design voltages, giving rise to negative and unphysical
force components. Singh and Roy10 and Grundmann
et al.15 build upon this approach, by proposing a con-
siderably more sophisticated and highly tuneable-
induced body force vector. The basis of their model
is detailed multiscale modelling of a two-dimensional
DBD with a finite element time adaptive method. This
detailed modelling confirms that the maximum
plasma force arises in the overlap between the exposed
and grounded electrodes. Assuming that an essentially
time-averaged body force arises, and coupled to
choosing initial conditions matched with realistic
experimental data, they proposed that the electro-
dynamic force could be well approximated by expo-
nential forms. Generally they find that for fixed
frequency, the body force-induced jet velocity
increases with the applied voltage.

Their body force expression is of course strictly
two-dimensional, an accurate description of the elec-
tric field that is strongly tied to the electrode 3D-shape
is a much more difficult problem to model and par-
ameterise, which will be case and shape dependent.
Disotell16 considers the implication of having a peri-
odic array of shaped plasma actuators and studies
them in a semi-empirical manner. More recent
works concerned with controlling flow instabilities
as opposed to flow separation are those of Wang
et al.17 (with a nonlinear PSE plasma model) and
Dorr and Kloker18–20 (compute and resource inten-
sive DNS modelling). In addition to Ustinov et al.,1

whose experiment we replicate in this paper numeric-
ally, experimental plasma control of crossflow
instability using the killer mode concept has also
been reported by Serpieri et al.13

In the PSE model of Wang et al.,17 a sensitivity
analysis is undertaken of the effect of plasma on the
nonlinear crossflow arising in the swept Hiemenz base
flow. Due to the inability of the PSE to model the
disturbance generation process arising from the
plasma actuation itself, they model how a pre-existing
crossflow disturbance state (generated by some other
means) is modified as it convects through the plasma
(i.e. a sensitivity analysis) region. In addition to this
simplification, there is also the assumption of a very
weak plasma momentum force, to enable the non-
linear PSE (NPSE) study to be feasible.

We investigate the feasibility of modelling plasma
flow control through the linearized Navier–Stokes
model. The plasma actuation within the LNS
scheme of modelling the periodic spanwise actuation
of stationary crossflow vortices is of an exploratory
but novel nature. We add in the three-dimensional

actuation capability by a smoothly varying step func-
tion (in the y-spanwise direction) to give periodic vari-
ations in span for the body-force source terms. Hence,
the spanwise variation is simply a smoothed step up/
down function (ranging between 0 and 1) which
allows the plasma to be active in a specified fraction
of the periodic box under investigation along similar
lines as that shown in Figure 1. As remarked above,
most work in plasma actuation has been based on
making significant alterations to the flow, for example
to control flow separation. The linearised Navier–
Stokes model herein will be a valid model for magni-
tudes of the body-force source terms which lead to
weak changes to the leading order basic field.
Unlike using the full brute-force approach of Dorr
and Kloker,18 the harmonic LNS route affords an
efficient means of investigation of this relatively
weak phenomenon. Not only does the LNS method,
unlike the PSE model, capture the birth process of
crossflow disturbance due to the plasma, but it also
captures non-parallel and any detailed short-scale
physical processes arising in the disturbance evolu-
tion. PSE models cannot model processes below a
certain spatial resolution due to an inherent ill-posed-
ness in the PSE equations and hence step-size restric-
tion. This has been demonstrated in the context of
surface roughness-induced stationary crossflow gener-
ation by Mughal and Ashworth.21 All of the LNS
results reported in this paper were undertaken on a
stand-alone workstation, with each LNS simulation
taking less than 5min for a highly resolved grid-inde-
pendent computation.

The details of our numerical approach may be
found in the paper of Thomas et al.,22 and below we
focus on aspects of the plasma model and demon-
strate the efficacy of our LNS model with compari-
sons with the experiment. The basis of our
methodology is as follows: we utilise the LNS model
for capturing the plasma-induced crossflow gener-
ation of the killer mode; and the amplitude of the
killer mode predicted by the LNS model is then
used to force the significantly more efficient nonlinear

48 mm

15 mm 
60 mm

λ

1 mm 

Figure 1. Sandwich actuator with control electrodes (JIHT
report by Moralev et al.25)
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PSE solver to investigate the control aspects of the
study.

Experiment

The experiment in the TsAGI T124 tunnel has been
described in detail in Ustinov et al.1,23 In summary, a
flat plate with 35" sweep was subjected to a favorable
pressure gradient flow on one surface through tunnel
wall profiling. This was designed to promote the
development of cross flow instabilities. Hot wire vel-
ocity profile measurements were made across three
spanwise planes at distances of 250mm, 350mm and
600mm from the leading edge. The last of these was
expected to be close to the onset of transition.
Extensive surface pressure data were also collected.
Preliminary numerical studies23,24 had shown that
the most amplified naturally occurring stationary
cross flow mode was close to 7.5mm in spanwise
wavelength and this could most effectively be con-
trolled through introduction of a ‘‘killer’’ mode
having 2/3 of the spanwise wavelength, i.e. 5mm.
Thus, a DBD actuator was developed by JIHT to
promote this particular mode through a periodic
arrangement of electrodes.25 This consisted of two
embedded electrodes as shown in Figure 1. The
lower embedded electrode included equidistantly
spaced electrodes at the actuation wavelength
(k¼ 5mm) and an electrode width (w¼ 2mm).
The DBD actuator was embedded in the plate
with the downstream edge of the exposed electrode at
a distance of 120mm from the leading edge of
the plate.

Measurement data were collected with and without
actuation at a tunnel speed of 25m/s which was equiva-
lent to a virtual freestream of 31.9m/s. The plasma
actuation in the experiment, unlike the simulations
reported in this paper, was found to advance rather
than delay transition in the experiment. From the spec-
tral velocity data, this was thought to be due to
unsteady forcing by the plasma actuator which gener-
ated travelling crossflow modes alongside the station-
ary modes. The travelling modes were sufficiently
unstable to trigger the early transition. Finding a way
of eliminating this unsteadiness is one of the major
technical challenges to be overcome if plasma actuators
are to be used in this way. This will be the subject of
future work. This paper describes numerical modelling
of the actuators neglecting the unsteady effects and
certainly the simulations indicate that the actuators
should be able to produce a delay in transition,
should it prove possible to eliminate and manufacture
plasma actuators exhibiting reduced levels of unsteadi-
ness during operation. Nevertheless, the numerical
model of the actuator arising from the Buterfli project
and our simulations has been successful in validating
some aspects of the experiment, and indeed we find
that plasma actuators can be used to control stationary
crossflow vortices.

Numerical model

Equations

The generation of the killer cross flow mode has been
modelled through incorporation of a modified form of
the TsAGI body force model26 into a linearized
Navier–Stokes (LNS) solver developed at Imperial
College with support from Airbus Group
Innovations.2 As described in some detail in Mughal
and Ashworth21 and Thomas et al.,22 the LNS equa-
tions are solved for spanwise periodic disturbances in
a spanwise homogeneous base flow with a computa-
tional domain that encloses one period of the disturb-
ance inducing roughness or plasma forcing as
indicated in Figure 2.

The derivation of the LNS equations follows the
usual route of decomposing the total unsteady flow q̂,
along the following ansatz

q̂ðx, y, z, tÞ ¼ !Qðx, zÞ þ ~qðx, y, z, tÞ ð1Þ

where t is a time variable, ðx, y, zÞ spatial variables, !Q
represents the steady spanwise invariant in y base flow
velocity field, and ~q the disturbance state involving the
velocity components ð ~u, ~v, ~wÞ and pressure ~p. The
steady pressure field is assumed to be invariant with
ð y, zÞ and thus !P ¼ !PðxÞ only. The disturbance state is
then decomposed as follows

~qðx, y, z, tÞ ¼
Xm¼N

m¼!N
qðmÞðx, zÞeiðm!y!!tÞ ð2Þ

In the above, a time harmonic and span periodic
ansatz is assumed for the disturbance ~q, i.e.

@ ~q

@t
¼ !i!qðmÞ

@ ~q

@y
¼ !im!qðmÞ

ð3Þ

for a specified angular frequency and wavenumber
pair ð!,m!Þ, with ! ¼ 2"=l: Substitution of the

y λ

z

x

Figure 2. Computational domain of linearized Navier–Stokes
solver for spanwise periodic roughness or body forcing in
spanwise homogeneous flow.
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above into the unsteady body-fitted Navier–Stokes
equations, followed by neglect of nonlinear terms
leads to the LNS equations (see Appendix 1). As
our focus is on control of steady crossflow modes,
from here on we set ! ¼ 0, while the integer m is
used to model higher harmonics of the stationary
crossflow which arise in the near field of the plasma
actuation site, as well as to denote the same modes
developing in our nonlinear PSE simulations (note
equation (1)). For clarity, from here on we drop the
suffix m-notation on the qðmÞ variable.

The plasma is represented by f̂k field source terms
in the forced LNS momentum equations, while rough-
ness is represented through a ‘‘wall’’ boundary condi-
tion obtained from a Taylor expansion in the total
flow (base plus disturbance) in conjunction with the
requirement that no slip is satisfied where the surface
of the roughness would be (i.e. in the interior of the
flow rather than the ‘‘wall’’). Thus

q x, y, 0ð Þ ¼ !H x, yð Þ @
!Q

@z
ð4Þ

for a given height function H and base flow velocity
!Q ¼ ð !U, !V, !WÞ: The discretised LNS equations ultim-
ately require the solution to a linear system of equa-
tions of the form

L~q ¼ ~r ð5Þ

where ~r is constructed from either the field source
terms involving f̂k for the plasma model developed
by TsAGI, or and in combination with the roughness
function H: The LNS operator L is derived through a
fourth-order accurate finite difference discretization in
x (the streamwise direction), a pseudo spectral discret-
isation in z and a Fourier decomposition in y the
spanwise domain.

TsAGI-JIHT body force model for distributed
actuation

Within the Buterfli project, a phenomenological body
force model was formulated for the DBD actuator
developed at JIHT. PIV measurements of the flow
generated by the device were made by JIHT in quies-
cent conditions and the thrust generated by the device
over one span period was determined through integra-
tion of the measured momentum flux on a control
volume enclosing one spanwise period of the device.
A value of FxR¼ 5.0' 10!6 N per period was arrived
at for an actuation voltage of 3.2 kV, frequency of
190 kHz and electrode width of 2mm. The forcing
was observed from PIV to be restricted to a cuboidal
domain immediately above the electrode of size
1.5mm, 2mm and 0.2mm in the streamwise,
spanwise and wall normal directions, respectively.
Determination of the spanwise component of the
forcing was more problematic as the symmetry

properties excluded the approach used for the stream-
wise component. However, an estimate was made that
the spanwise component was FyR¼ 1.2' 10!6 N in
each half of the cuboidal domain with the force
having opposite directions in each half of the
domain. The wall normal component of the force aris-
ing from the actuation was observed to be negligible
compared to the wall tangential components and was
therefore taken to be zero. TsAGI took this informa-
tion from JIHT and combining it with insights gained
from their parametric studies for canonical 2D (span-
wise invariant) DBD actuators including in particular
the location of force maxima, arrived at a more
detailed model of the force distribution as a function
of voltage. This is described in some detail in Ustinov
and Rusianov.26

The field source terms f̂k in the forced LNS (see
Appendix 1) arise on performing a fast Fourier trans-
form (FFT) in y of expressions26 for the longitudinal
and spanwise components of the force density (N/m3)

Fx ¼
1

x0y0z0
Fx"# x̂ð Þ

x̂ẑ

"1=2
e! x̂2þ ŷ2=4þ ẑð Þ

Fy ¼
1

x0y0z0
Fy"# x̂ð Þ x̂ŷẑe! x̂þ ŷþ ẑð Þ

ð6Þ

in which the non-dimensional coordinates are with
respect to the location of the force maximum, i.e.
x̂ ¼ x=xo, ŷ ¼ y=yo, ẑ ¼ z=zo: The coordinates of
the force maximum location depending linearly on
the ratio of the applied voltage to the discharge volt-
age are as follows

x0 ¼ Fx1
V

V0
! 1

! "

y0 ¼ Fy1
V

V0
! 1

! "

z0 ¼ H1V

ð7Þ

The integrated values (for one electrode intersec-
tion) of the force density components depend quad-
ratically on the voltage ratio

Fx" ¼ Ax
V

V0
! 1

! "2

Fy" ¼ Ay
V

V0
! 1

! "2
ð8Þ

The integration is over one side (left or right) for
the y component; # is a Heaviside function to ensure
forces are zero for negative x. The various coefficients
have been empirically determined to have the
following values: Ax ¼ 1:82' 10!5N, Ay ¼ 4:37'
10!6N, Fx1 ¼ 1:43mm,Fy1 ¼ 0:65mm (changed
from Fy1 ¼ 0:95mm in original model26) and H1 ¼
0:0312mm=kV These parameters stretch the
plasma field of influence in the streamwise and
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wall-normal directions, and along with the use of the
Heaviside function # affords maximum flexibility
to fine-tune the plasma model with data from
experiment.

The LNS simulations with the implemented model
have been applied to a boundary layer corresponding
to the experimental conditions for a tunnel reference
velocity of 25m=s as described in Ustinov et al.1 The
boundary layer or the steady base flow represented by
!Qðx, zÞ in equation (1) was computed with the

non-similar boundary layer solver CoBL,27 using an
equivalent virtual freestream velocity of 31:9m=s
together with the corresponding pressure coefficient
interpolated from experimental pressure measure-
ments is shown in Figure 3.

The interpolated pressure data were then used to
compute three-dimensional boundary-layer profiles
for the subsequent disturbance control simulations
involving either LNS or nonlinear PSE. As a check
on the correct implementation of the surface pressure
data, the CoBL recomputed boundary-layer edge vel-
ocity distribution was found to compare very well
with the experimentally measured edge velocities, as
may be seen in Figure 4. This is a crucial check since
instability analysis is known to be very sensitive to
any inaccuracies or inconsistencies in the boundary-
layer computations. The resulting streamwise and
spanwise velocity profiles computed by our bound-
ary-layer solver CoBL are displayed in non-dimen-
sional form in Figure 5 at a number of streamwise
positions. Validations and adequacy of the CoBL
laminar boundary-layer computed solutions and com-
parison with RANS-derived boundary layer profiles
were previously reported in Thomas et al.27

Results and discussion

Stability analysis with a linear PSE solver for a range
of stationary cross-flow modes revealed a most ampli-
fied mode of around 8mm, as shown in Figure 6(a),
which is in line with previous analysis of Ustinov
et al.23 and Hein.24

A comparison between linear PSE for the 5mm
‘‘killer’’ mode generated with our LNS simulation of
a cylindrical roughness element placed within a peri-
odic box of l ¼ 5:0mm span showed good agreement
with the amplification based N-factor, as shown in
Figure 6(b). The precise details of the roughness elem-
ent are unimportant, since we use it simply as a means
to generate the linear stationary crossflow disturbance.

Figure 5. Non-dimensional boundary layer profiles: component in directions of inviscid stream (a) and cross-flow component (b).
Velocity components and wall normal distance are normalized by local boundary layer edge velocity displacement thickness
respectively.

Figure 3. Pressure coefficient Cp based on virtual free
stream conditions and measured data.

Figure 4. Comparison of computed and measured edge
velocity.
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The LNS solver was then applied with the plasma actu-
ator for a range of applied voltages from 3.0 kV to
4.0 kV for a 5mm domain spanwise width. Stationary
crossflow ‘killer’ modes of varying magnitude are thus
directly generated by the imposed varying plasma for-
cing. A primary concern before analysis can be con-
ducted is to confirm the implicit assumption that
the plasma body force induces only weak variations
to the base flow. This is confirmed by examination of
the induced steady base flow correction, the so-called
(0,0) mean flow distortion disturbance, computed by
the LNS on setting m ¼ 0 in equation (2). Figures 7
and 8(a) show the w, v and u components of the (0,0)
mode disturbance near the plasma activation site
(x¼ 0.12m). The u-component of the (0,0) mode is
the largest in magnitude and indicates fluid to be accel-
erated in the normal to leading edge streamwise and
spanwise directions while also being drawn in towards
the surface at the commencement of the actuation (i.e.
the relatively larger negative valued w-field in Figure
7(a)). Observe that the plasma effect is quite localized
(concentrated at about x¼ 0.12m) for the ðw, vÞ-fields,
where w is the weakest field followed by the spanwise
v-component a factor of ten larger, but by about
x¼ 0.14 all three velocity components have diminished
in magnitude significantly.

The corresponding streamwise (0,1) u-disturbance
killer modes birth (at x¼ 0.12) and subsequent con-
tinuous growth in amplitude with x are shown in
Figure 8(b). The fairly rapid growth in x of the (0,1)
disturbance by about x¼ 0.25 is then sizable
enough for nonlinearity to be significant and this
then induces the re-growth of the (0,0) u-mode (note
Figure 8(a)). That this re-growth of the mean flow
disturbance is due to nonlinearity may be ascertained
from Figure 9, which shows maximum amplitude evo-
lution with x of a number of higher harmonics
(including the (0,0) mode) generated by the plasma
field with our Navier–Stokes solver run in true
linear mode for applied voltages of 3.0 kV and
4.0 kV. Observe that the (0,0) disturbance amplitude
for both voltages keeps on decreasing with x, down-
stream of the x¼ 0.12 generation site. Moreover, note
all the near field higher harmonic-generated modes
rapidly decay in magnitude too, apart from the fun-
damental ‘killer’ (0,1) mode. Finally, we also show
results of our linear PSE, which are in very good
agreement with the LNS results once the (0,1) cross-
flow disturbance has established itself. Since the amp-
litude for the 5.0mm induced killer mode is to be used
in non-linear PSE analysis to investigate the control
of the most rapidly growing 7.5mm disturbance, this

Figure 6. Linear PSE for a range of span wavelengths (a) and comparison between linear PSE and LNS simulation for the 5 mm
mode (b).

Figure 7. Base flow modification, mean flow distortion (0, 0) mode due to plasma actuation (applied voltage 4.0 kV). Normal to
leading edge wall normal w and spanwise v-disturbance fields.
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good agreement between PSE and LNS provides
significant confidence in the adequacy of using
non-linear PSE analysis in the plasma control work
presented below.

The downstream development of the peak ampli-
tude in the normal to leading edge component of the
velocity disturbance killer mode for a range of plasma
voltages is shown in Figure 10. The linear growth is
seen to commence in all cases at about 200mm from
the leading edge, but a loss in effectiveness is also
suggested with increasing applied voltage, since the
change in disturbance amplitude curves going from
3.8 kV to 4.0 kV appears to be decreasing and or
attaining an upper maximum limit. The development
of the disturbance was compared with experimental
measurements made at a plane 250mm from the lead-
ing edge as shown in Figure 11, where the disturbance
uo and associated dimensionalising velocity Uo are
defined in experimental coordinates along the free-
stream direction. This reveals an almost linear
increase in amplitude with applied voltage for both
the experiment and the numerical model with remark-
ably good agreement between the two. The amplitude
for the highest voltage induced 5.0mm killer mode
was used in subsequent NPSE analysis to investigate
the control of the most rapidly growing 7.5mm
disturbance.

The (0, 3) control mode amplitude at x¼ 0.25m
obtained from the LNS model with actuator voltage
of 4.0 kV has been used to initialize an appropriate
initial killer mode amplitude in a NPSE computation,
the results of which are shown in Figure 12. Note
from here on, we refer to the same 5.0mm plasma
generated, previously denoted (0,1) mode correspond-
ing to wavenumber ! ¼ 2"=l5mm ¼ 3!PSE, as the (0,3)
killer mode in the NPSE control analysis with a redef-
inition of the spanwise wavenumber !PSE ¼ 2"=l15mm.

Figure 8. Stationary crossflow streamwise u-disturbance field generation and evolution. Plasma actuation of applied voltage of 4.0 kV
is concentrated at about x¼ 0.12 m. (a) Shows the (0,0) mean flow distortion u-disturbance, while plot (b) shows the fundamental
(0, 1) u-disturbance.

Figure 9. Left plot (a) shows 3.0 kV near field, while right plot (b) is the 4.0 kV generated near field computed with LNS, also shown
is the (0, 1) linear PSE result (dashed black curves). Observe that in the 4.0 kV simulation, the plasma-induced mean flow correction
(0,0) is much stronger and persists downstream of the plasma site.

Figure 10. Profile maximum disturbance amplitude evolution
of killer mode for increasing actuation voltages (3.0, 3.2, 3.4,
3.6, 3.8 and 4.0 kV).
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The amplitude of the transition causing target (0, 2)
mode (¼ 2!PSE) with spanwise wavelength of 7.5mm
was set to correspond with the experimental measure-
ment data reported in Ustinov et al.1 Comparison of
the uncontrolled and controlled growth of the target
mode indicates a clear reduction in amplitude and an
expected delay in transition of about 0.1m. In reality,
as was mentioned previously, there was a forward
movement in transition in the experiment1 where
this is explained in terms of the excitation of transition
causing travelling modes by the plasma actuator due
to the plasma-induced unsteady velocity fluctuations
which increase linearly with actuation voltage. This
unsteadiness in the actuation is not captured in the
actuator model described here and thus it is not pos-
sible to capture the generation of the travelling modes.
However, the work does indicate that if the physical
realization of the distributed plasma actuator can be
redesigned so as to lessen the unsteady component of
the forcing then it can be expected to be capable of
producing a delay in transition due to cross-flow
instability and this should be a focus for future

plasma actuator development. Moreover, scaling
arguments reported within the Buterfli project28

have indicated that the approach based on distributed
plasma actuation could be energetically favourable
when considered for application at flight scale thus
providing an important practical incentive for contin-
ued development of this technology.

Conclusions

It has been demonstrated that the generation of
‘‘killer’’ modes by plasma actuation can be modelled
through a linear Navier–Stokes approach which when
used in conjunction with a non-linear PSE solver can
make a prediction about the delay in transition arising
from the actuation. Although the numerical model
has been shown to give good agreement with experi-
ment for the amplitude of the killer modes on a down-
stream plane, the subsequent non-linear interaction
leading to suppression of the transition causing
‘‘target’’ mode and delay in transition is not what
was observed in experiment. This is due to unsteady
effects in the plasma actuation and the generation of
transition causing travelling crossflow modes in the
experiment. Nevertheless, should future refinements
in the actuator hardware permit the elimination of
the unsteady actuation effects, then the modelling
approach outlined provides a good basis from which
to predict the effectiveness of such actuators.

We have also demonstrated an efficient high fidelity
LNS-based methodology, which allows analysis to be
undertaken relatively quickly. Comparison with linear
PSE is equally good, and our LNS method may be
used to provide initial amplitudes to initialize non-
linear PSE simulations. The coupled LNS-NPSE
approach reproduces nearly DNS-like results in frac-
tions of the time and CPU hardware resources com-
pared to full DNS simulations. The LNS method
models the generation of crossflow disturbances, i.e.
receptivity directly, and quite remarkable agreement
with experiment has been obtained. The incorpor-
ation of body force terms within the LNS framework,
we believe is ideally suited for the study of propaga-
tion, generation and control of instabilities in
plasma-based flow control when the instabilities to
be controlled and manipulated are relatively weak.
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Figure 12. Non-linear PSE computation showing interaction
of (0, 3) killer mode generated by plasma actuation with (0, 2)
target mode for (0, 1) fundamental mode of 15 mm. Red star
shows amplitude from LNS calculation. The u-amplitude is
scaled with Qe the local boundary-layer edge total velocity.

Figure 11. Amplitude of killer mode as a function of the
actuator voltage on the measurement plane, 0.25 m from the
leading edge.
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Appendix 1

Incompressible body fitted linearised Navier–Stokes
disturbance equations:

Flow variables are the three velocity terms,
ð !U, !V, !WÞ denoting the basic steady flow in the chord-
wise ðxÞ, spanwise ð yÞ and wing-normal ðzÞ directions,
and the associated velocity disturbance states ðu, v,wÞ
and pressure disturbance p: Body surface curvature
terms are denoted by $ and %. Here $ is the local
body curvature, while % is given as follows

% ¼ 1

1! $y
%ux þ wz ! $%w þ im!v ¼ 0

ð9Þ
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uzz þ %2uxx
R

! u im! !V þ m2!2 þ $2%2

R
þ % !Ux! $% !W

! "

!%Px! !W þ $%
R

# $
uz þ $% !U! !Uz

% &
w

! % !Uux!
2$%2

R
wx þ f̂x ¼ 0 ð10Þ

wzz þ %2wxx

R
! w im! !V þ m2!2 þ $2%2

R
þ !Wz

! "

! Pz ! !W þ $%
R

# $
wz ! 2$% !U þ % !Wx

% &
u

! % !Uwx þ
2$%2

R
ux þ f̂z ¼ 0 ð11Þ

vzz þ %2vxx
R

! v im! !V þ m2!2

R

! "
! im!P! !Vzw

! !W þ $%
R

# $
vz ! % !Uvx ! % !Vxu þ f̂y ¼ 0

ð12Þ

In the above, R is an appropriately defined
Reynolds number.
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Destabilization of Stationary and Traveling Crossflow

Disturbances Due to Steps over a Swept Wing

Emma E. Cooke� , Shahid Mughal † and Spencer J. Sherwin ‡

Imperial College London, London, United Kingdom, SW7 2AZ

Richard Ashworth§ and Stephen Rolston ¶

Airbus Wing Integration Centre, Building 07Y, Bristol, United Kingdom, BS34 7PA

Destabilization e�ects of forward facing steps, backward facing steps and bumps on sta-

tionary and traveling crossflow disturbances are investigated computationally for a 40° infinite

swept wing. Step and bump heights range from 24% to 53% of the boundary layer thickness

and are located at 10% chord. The spectral/hp element solver, Nektar++, is used to compute

base flow profiles with an embedded swept wing geometry. Parabolized Stability Equations

(PSE) and Linearized Harmonic Navier-Stokes (LHNS) models are used to evaluate growth of

convecting instabilities. The paper describes derivations of the PSE and LHNS models which

accurately solve for the perturbed field over the very localized and rapid variations imposed by

the surface step-features. Unlike the PSE, which su�er from a stream-wise numerical step size

restriction, the LHNS are a fully elliptic set of equations which may use arbitrarily fine grid

resolution. Unsurprisingly, the PSE codes fail to capture the e�ect of abrupt changes in surface

geometry introduced by the steps features. Results for the LHNS and roughness incorporating

LHNS are given for the varying step types. Comparisons are made between the LHNS model

and direct numerical simulations involving the time-stepping linearized Navier-Stokes solver

in the Nektar++ software suite. Most previous work in the topic area has focused on Tollmien-

Schlichting perturbations over two-dimensional flat plate flows or airfoils, the novelty of this

work lies with analyzing crossflow instability over a swept wing boundary-layer flow with step

features.

Nomenclature

x1 = Stream-wise body fitted co-ordinate
x2 = Wall-normal body fitted co-ordinate
x3 = Span-wise body fitted co-ordinate
s = Stream-wise co-ordinate in computational domain
Y = Wall-normal co-ordinate in computational domain
z = Span-wise co-ordinate in computational domain
u = Stream-wise velocity in computational domain
v = Wall-normal velocity in computational domain
w = Span-wise velocity in computational domain
h = Function for step or roughness profile
c = Chord
t = Time
xb = Beginning of roughness location in stream-wise body fitted co-ordinates
xe = End of roughness location in stream-wise body fitted co-ordinates
bl = Bubble length
bh = Bubble length with respect to roughness height
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bw = Bubble length with respect to roughness width
hw = Roughness width
↵ = Stream-wise wave number
� = Span-wise wave number
! = Frequency of disturbance
N = N-factor
i = Imaginary unit
j = index quantity
✏ = Negligible quantity
c.c. = Complex conjugate
�x1 = Length between stream-wise station locations
�h = Boundary Layer thickness at roughness location
yc = Height of crossflow vortex core
r̂ = Forcing vector
L = Matrix
Re� = Reynolds number based on boundary layer thickness

Subscript

i = Imaginary component
r = Real component
† = Complex conjugate
e = Boundary layer edge value
0 = Stream-wise derivative term

Superscript

� = Mean flow quantity
⇠ = Perturbed flow quantity
^ = Shape function

I. Introduction

Drag reduction is one of the most important objectives for aircraft manufacturers today. An aircraft with lower drag,
is not just more economical but also more environmentally friendly, which is inevitably becoming an ever growing
concern. Fuel e�ciency can be increased through a number of modifications to the aircraft but a major focus is on the
construction of a swept laminar flow wing [1]. Large aircraft of today feature turbulent boundary layers on the majority
of the exposed wetted surface, resulting in viscous drag that is five to ten times larger than a laminar boundary layer [2].
Achieving and maintaining laminar flow on a wing is hindered by surface imperfections which may be present on the
wing. These imperfections can act as destabilization sites and may arise from rivets, leading edge to wing box junction
tolerances, or even insect contamination. The presence of these roughnesses, or very localized surface imperfections,
which occur primarily in the form of steps or bumps and interact with pre-existing instabilities within the laminar
boundary layer. This promotes instability growth causing earlier transition, a thickening of the boundary layer and hence,
increasing shear stress over much of the surface. This can completely eradicate any drag reduction benefit obtained
from the laminar flow wing.

Instabilities occur in the boundary layer through various receptivity mechanisms. Disturbances may arise through
interactions involving acoustic noise, free stream turbulence or / and in combinations with surface roughness features.
The amplitude of disturbance present will define the pathway taken, whether it be linear, non-linear, transient, or bypass,
to reach transition [3]. Since the disturbance of interest is relatively small, the focal pathway will be through the linear
growth regime. Of course, these instabilities can be simulated with direct numerical simulation (DNS) but pouring huge
amounts of computational time and resource into predicting these growths is not feasible for industrial design purposes.
Consequently, there is motivation for rapid tools that can accurately and e�ciently predict transition location without
utilizing huge computational resource.

In the past, industry has used a semi-empirical method, eN , coupled with traditional Linear Stability Theory (LST),
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to predict the growth of an instability [4]. Essentially, exponential amplification of disturbances from inception to
transition are specified through a calibrated N-factor, the critical N-factor is then determined from flight test data. This
still remains a very appealing approach for industry, however in circumstances when a surface roughness is present, the
flow in its vicinity is subject to large non-parallelism and LST breaks down. There exist other, superior, approaches
which take into account non-parallel e�ects and surface curvature and can be extended to model non-linear interaction
of modes. One of these is through solution of the parabolized stability equations (PSE) [5, 6]. However, even the
PSE have been shown to be invalid when the width of the roughness is of the same length scale as the instability [7],
since correctness of the mathematical model is constrained by a step size restriction [8]. The only methods remaining
which are able to properly capture the e�ect for small and abrupt changes to surface topography are DNS, which have
already been deemed infeasible for industry, and are generally used for further understanding of physics and validation
of methods; asymptotic methods, such as the local scattering approach by Wu and Dong [7], which isolate dominant
physics in a flow are limited in the parametric range under which they are constructed and finally, the linearized harmonic
Navier-Stokes equations (LHNS) [9, 10], which are the most appealing as they do not su�er the step size restriction of
PSE nor the computation cost of DNS.

Research has generally been dominated by investigating convection of Tollmien-Schlichting waves over steps
and bumps on unswept flat plates [11–15] or two-dimensional (2D) airfoil models [16–18]. However, an important
contributor for destabilizing swept wing laminar boundary layers are crossflow instabilities (CFI), which makes the
application of these studies to swept wing flows very limited. Over recent years investigations have taken place for
steps and bumps on swept flat plate flows and a few infinite swept wings which feature inflectional velocity profiles,
characteristic of CFI. Invariably, if the steps or local features change rapidly enough (i.e. surface discontinuity) a laminar
separation bubble (LSB) will arise, which may act as an oscillator and amplifier. LSB’s have been investigated in some
detail in the 2D context [19], but the investigation of LSBs in the three dimensional (3D), less so. In this case, there is
no longer a closed recirculation but a 3D open recirculation LSB in the span-wise direction.

A common conception based on experiments and computations concerning 2D steady flows is that backward facing
steps (BFS) have a much more detrimental e�ect on boundary layer transition than forward facing steps (FFS). Duncan Jr.
et al. [20] and Perraud et al. [21] suggest that the transition location is generally una�ected by small steps but then
suddenly jumps to the step, implying there exists a critical step height. Generally, separation bubbles are helical flows
which flow root to tip, contrary to the span-wise crossflow direction which flows tip to root [22]. Very recently, a critical
step height has been characterized for swept flows over forward facing steps. Vidales et al. [23] experimentally and
Tufts et al. [22] numerically studied the critical height for forward facing steps (FFS) and propose that if the core of
the crossflow vortex height (yc), for the clean case, is less than the height of the step (h) a destabilizing interaction
takes place. This interaction is between the crossflow and helical downstream flow that is the separation bubble. The
height of the core of the stationary crossflow can be determined by finding the CFI wavelength with the largest N-factor
at the step location and then finding the maximum of the v-perturbation shape function. If h > yc the interaction is
constructive, amplifies the stationary crossflow and the transition front moves towards the step. Vidales et al. [23] also
note that an increase in the ratio of the step height to the boundary layer thickness at the step (h/�h) results in a larger
reduction in critical N-factor for a fixed yc/h ratio. Tufts et al. [22] confirmed the interaction of the separation bubble
with a trial experiment. They artificially reduced the size of the separation bubble on top of the step but kept the step
height the same. When doing this they found that the step produced similar disturbance profiles (amplitudes and shapes)
to those for sub-critical step heights rather than the critical behavior expected for that step height.

Tufts et al. [22] also investigated the backward facing step (BFS) which exhibits a larger recirculation region than in
the FFS case. They observed that increasing the step height results in a gradual movement of transition towards the step,
rather than a quick jump, making it hard to characterize a critical height. They reasoned this is because of the presence
of a traveling mode in the recirculation bubble which interacts with the stationary CFI.

Various FFS’s and BFS’s have also been investigated experimentally by Eppink [24, 25] for step heights ranging
from 53 to 71% of the boundary layer. Eppink used the same criteria for predicting the FFS critical step height as Tufts
et al. [22] and although results agreed well qualitatively, Tufts et al. predicted a critical step height 15% larger than
Eppink found in experiments. Eppink reasoned that upstream of the step the primary incoming stationary crossflow
vortices are lifted up significantly from the wall and do not directly impact the step. There are a second set of vortices,
rotating in the opposite direction, which form underneath the primary set. Due to their rotation in the opposite direction,
their interaction with the downstream helical flow should not be destabilizing. Eppink suggests the crossflow reversal
region plays a crucial role in the transition process. Firstly this is because of the e�ect of the near wall vortex, caused
by the crossflow reversal, on the growth of wall-normal perturbations near the wall. Secondly due to the strong
streamline curvature induced from the positive crossflow component which causes the two vortices to eventually merge,
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a consequence of which is a large stationary crossflow growth downstream.
This work assumes that crossflow instabilities, either stationary or traveling, have already been generated in the

boundary-layer by an appropriate receptivity mechanism. The focus of the research is how these pre-existing disturbances
are then further modified as they convect over sudden, localized, changes in surface geometry. The aim of this work is
to explore and develop robust methods of analysis to enable quantification of how laminar flow may be degraded in the
presence of three dimensional LSB’s, induced by step-like features, and their interaction with crossflow disturbances.
Motivation for the work arose from experiments undertaken by Saeed et al. [26] on a swept wing geometry (AERAST
model, see Mughal and Ashworth [9]) where the movement of the laminar-turbulent transition front was observed
with naphthalene. Single, infinitely long, 2D steps were created with Kapton tape at varying heights to mimic steps.
A key finding was that beyond a critical height, waviness and jaggedness in the transition front was observed, and
traveling crossflow instability signals were measured in the hot-wire data. Further increments in step heights moved the
transition front forward towards the step. In recent more detailed experimental work Eppink et al. [27], find that the
CFI destabilization that arises from BFS is not straightforward – the movement of the transition front in insensitive to
BFS below a critical step height, and once the threshold is crossed then a rapid movement of the transition front to the
step location is observed. These findings (together with findings of Saeed et al. [26]) suggest an altogether di�erent
mechanism in flow destabilization arises in BFS based swept wing boundary layer flows.

This paper outlines the methods that we use for modeling rapid changes in surface features, and their consequent
e�ect on crossflow disturbances convecting over the small-step feature introduced on a swept wing geometry. The
numerical modeling and instability analysis with PSE and LHNS, along with a new set of LHNS equations which
incorporate the geometrical modeling of the steps is described in §II. An embedded mesh approach is used involving
coupling an industrial finite volume RANS solver to obtain a global flow solution over the entire airfoil geometry, which
then provides boundary and initial conditions for a more refined highly resolved solution within an embedded region.
The highly resolved boundary-layer solutions over the micron-scaled step features is undertaken with direct numerical
simulation (DNS). The embedded steady DNS solutions are obtained with a high order spectral/hp element solver,
Nektar++. Some initial findings of the work are described in §III for FFS, BFS and bumps ranging from heights 24% to
53% of the boundary layer thickness. The steps are placed at 10% chord on a 40° infinite swept wing geometry. Some
initial conclusions then follow in §IV.

II. Methods

A. Governing Equations

The two main methods applied in this work are the PSE and LHNS. Both are rapid methods for predicting transition
location and involve decomposing the flow field into a base state and a perturbed field. The PSE model introduced by
Herbert [5], are harmonic in time and assume a slowly varying wave in the stream-wise, x1, direction and a strictly
periodic wave in the span-wise, x3, direction. They only retain terms which are up to O(Re�1

� ) and are reduced from an
elliptic to a parabolic set of equations. The PSE are obtained by first decomposing the flow field into a steady base flow
and unsteady perturbed flow,

q(x1, x2, x3, t) = q̄(x1, x2, x3) + ✏ q̃(x1, x2, x3, t), ✏ ⌧ 1. (1)

The Navier-Stokes equations are then linearized and the perturbation field is decomposed further into a shape, q̂, and
phase function,

R
↵(x)dx + �x3 � !t,

q̃(x1, x2, x3, t) = q̂(x1, x2)ei
R
↵(x1)dx1+�x3�!t + c.c., (2)

where the phase function absorbs rapid variations of q̂ though application of a normalization condition,
R
1

0 ũ† @ũ
@x1
+ ṽ† @ṽ

@x1
+ w̃† @w̃@x1

dx2
R
1

0 ũ†ũ + ṽ†ṽ + w̃†w̃ dx2
. (3)

The equation set can then be discretized and recast into the following matrix form,

�
L0 + L1

�
q̂ + L2

@q̂

@x1
+
@↵

@x1
L3q̂ = 0. (4)
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Here, L0, L1, L2 and L3 are all matrix operators in x2. L0 corresponds to the linear parallel terms, L1 contains
non-parallel terms of the basic state, L2 encompasses non-parallel perturbation terms and last, but not least, L3
corresponds to wave number terms.

The linear PSE equations can thus be solved very e�ciently by a stream-wise marching parabolic procedure
([28] [29] [30]). Some weak remaining ellipticity in the PSE means that they are constrained by a minimum step
size requirement for numerical stability. In order to obtain convergence, �x1 � 1/↵r must be satisfied; �x1 is the
minimum stream-wise step size and ↵r is the real part of the stream-wise wave number as alluded to by Li and Malik
[8]. The computational domain applies a stretched grid in the wall-normal direction and a fourth order accurate finite
central di�erencing discretization is applied within the domain. No-slip zero disturbance state is applied at the wall and
perturbations are assumed to vanish in the far field.

The LHNS, although requiring slightly more computational time and resource than the PSE, provide much more
information about the solution and are not limited by any step size restriction. They assume a periodicity in the span-wise
direction through application of the following ansatz,

q̃(x1, x2, x3, t) = q̂(x1, x2)ei (�x3�!t ) + c.c.. (5)

The linear harmonic Navier-Stokes form, comprises few assumptions, and are a fully elliptic set of equations which can
be recast upon numerical discretization into a large matrix problem of unknown field state points, namely

Lq̂ = r̂. (6)

Here, L, is a vector of the unknown perturbation field, q̂, and a forcing vector, r̂. The solution vector, q̂, is obtained
directly by a Lower-Upper matrix LU decomposition method. The forcing vector, r̂, is composed of first order Taylor
expansions which modify the wall boundary condition to generate the crossflow (CF) disturbance ahead of the step
feature. The wall inhomogeneity may be either stationary (to generate zero frequency disturbances) or non-stationary to
generate traveling CF disturbances, as denoted in Fig. 1.

Point forcing roughness h(s)

Fig. 1 Depiction of the computational domain showing generation of the instability (red) within a fully developed

laminar boundary layer and how this instability is modified when convecting over the roughness.

The equations are discretized with a fourth order accurate central finite di�erencing scheme in the steam-wise
direction and a spectral approach is applied in the surface normal direction. The inflow plane is situated su�ciently
upstream of the actuation point such that perturbations can be considered negligible there. At the outflow boundary the
PSE radiation condition is applied. Typically, 1800 points are used in the stream-wise direction and 51 Chebyshev
polynomials in the wall-normal direction for the no-step cases. Further details may be found in [9] and [31]. To resolve
disturbance evolution over the very rapid changes in the BFS and step induced boundary-layer flows as many as 10000
stream-wise and 90+ Chebyshev polynomials are subsequently utilized.

B. Incorporating the Roughness

We have discussed the generation of the perturbation via a small surface actuation, now we need to consider the
relatively larger scale step feature and its incorporation into the modeling. It is important to note that for both PSE
and LHNS codes, the solvers have visibility of the roughness or step though the base-flow profiles, but require an
additional transformation to allow resolution of the step feature introduced. The original perturbed PSE [29] and LHNS
[9] equations have been formulated based upon a body-fitted clean geometry coordinate system, without allowance for
very rapid variations in surface topography such as those considered in this paper.

In order to incorporate large scale roughness, a non-orthogonal coordinate system must be introduced and a parameter
assigned to the roughness profile, h(x1), which is dependent on the stream-wise body fitted coordinate, x1. The clean
body fitted coordinate system (x1, x2, x3) is transformed to the roughness incorporating coordinate system (s,Y, z) by
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application of the following transformation,

s = x1, Y = x2 � h(x1), z = x3, (7)

see Fig. 2 also. Since, upon substitution into the Navier-Stokes equations, the transformation is only introduced though
the derivative terms, we can see that the roughness edges will cause the key di�erence between the original and
transformed solutions, where dh/ds and d2h/ds2 hold non-zero values. The final transformed equation sets, which
include the rapid geometrical step modeling, will from here on be referred to as the LHNSh and PSEh models.

h(s)
s

Y

x 2 =
Y +

h(s)

x b

x e

xb xe

Y

s

Fig. 2 Depiction of coordinate transformation to decompose the roughness incorporating geometry, (x1, x2, x3),
to the body fitted clean surface, (s,Y, z), plus a separate h component. Computational domain is depicted on

the right.

C. Baseflow Generation and Step Configurations

The AERAST, 40° swept wing, geometry forms the basis of our investigations. The free stream velocity is 20 m/s
and Reynolds number is 1 ⇥ 106. The flow conditions and thus DNS computations are made to match as closely as
possible to the experimental campaign of Saeed et al. [26]. Boundary-layer field states for four varying step heights are
closely matched to the experiments performed. The experiments were only undertaken for localized steps created by
placement and layering of non-varying tape strips along the span of the swept model, together with the periodic in span
placement of distributed roughness circular elements (DREs) to generate crossflow disturbances ahead of the step. In
the computational work reported here, we replicate the experimental scenario but furthermore, we explore the e�ects of
forward facing step (FFS) and backward facing step (BFS) profiles too, on traveling and stationary CF disturbances –
not investigated in the experimental campaign of Saeed et al.. Each are evaluated at 10% chord with non-dimensional
heights 412.5µm, 618.7µm, 825µm and 893µm. The width of the bump is 3.75mm and heights, relative to the local
boundary layer thickness, are denoted in table 1. Only the one bump width is considered to replicate the work of Saeed
et al. [26]. Worner et al. [13] also suggest that the height of the roughness is much more detrimental to the laminar flow
than the width, which plays quite a minor role.

412.5 618.7 825 893

10% chord 24.43% 36.65% 48.86% 52.93%
Table 1 Roughness height as a percentage of boundary layer thickness of the clean (no step) geometry at each

given location.

A civil transport wing would have a boundary layer near the leading edge of the order of millimeters, a wing chord
on the order of meters and a span of tens of meters. Computationally modeling a roughness of the order of microns on a
geometry of this scale is very demanding with a single computation. To overcome such scale di�culties, in this work a
hybrid approach is being developed which combines the use of an industrial finite volume RANS solver to obtain the
global flow regime with an embedded hp spectral element approach to more e�ciently resolve the fine detail in the
laminar boundary layer and roughness. In order to produce the roughness base flow computations, firstly the clean, full
geometry, steady base flow is computed using RANS solutions of the industrial flow solver TAU [32]. An embedded
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steady DNS solution is then computed using a high order, spectral/hp element solver; Nektar++ [33]. Inflow boundary
conditions are extracted from the full TAU solution and high order pressure conditions are applied at the outflow to
enable converged solutions on the severely truncated domain [34], see Fig. 3. Far field inflow boundaries are located
35% of a chord length above and below, and 40% of a chord length upstream, of the leading edge. The upper outflow
planes are located at 70% chord, just before the flow begins to separate, and at 50% on the lower surface.

Fig. 3 Left shows the full TAU solution, right shows the embedded Nektar++ domain.

Nektar++ discretizes the domain with h, grid size, and/or p, polynomial order, refinement in order to solve the
incompressible Navier-Stokes, for the base flows. A second order accurate implicit-explicit scheme is applied for the
time integration and a sti�y stable splitting scheme is utilized to decouple the velocity and pressure fields. Fourier
expansions are applied within the span-wise direction with periodic boundary conditions to complete the 2.5 dimensional
domain. High order curve-linear meshes are created with computer-aided design (CAD) software and NekMesh which
is included in the Nektar++ framework [33].

Convergence studies of h and p type refinement are conducted to ensure no mesh dependence. Typically a
polynomial order seven was required, within the quadrilateral, near wall, layer and a lower order was su�cient within
the external triangular elements. Usual roughness meshes contain 10,000 elements which are then expanded though the
corresponding polynomial basis. Steady solutions are confirmed with an L2 norm relative error of velocity fields across
the entire domain such that,

c
ū1

PN
j=1
�
q̄t ( j) � q̄t�1( j)

�2
PN

j=1
�
q̄t ( j)

�2  10�5. (8)

D. Extracting Boundary Layer Profiles

Since the usual boundary layer solver tools fail to compute a valid solution for separated flows [17], a post processing
routine has been constructed to extract profiles from the Nektar++ steady state converged roughness simulations. The
DNS base flows are extracted and interpolated to the body fitted co-ordinate system for use in the subsequent stability
codes. Spline interpolation is applied in the stream-wise and wall-normal directions to attain an equi-spaced, grid in
the wall-normal direction, which is finer near the leading edge and grows downstream. A non-uniform stream-wise
growing grid is applied to ensure a finer clustering of points near the leading edge and step feature. In the latter position,
clustering is crucial to resolve the very rapid variation of the surface, as it merges from the step to the original step-free
surface, in an almost near vertical jump in the surface field variation. Data is non-dimensionalized with the boundary
layer edge values which are determined by finding the point where the stream-wise velocity is 99.99% of the inviscid
stream-wise velocity, such that ūe = 99.99% ūinviscid .

A boundary layer solver tool which solves the two dimensional boundary layer equations for swept wings, CoBLc
[35], has been used in conjunction with the clean (step-free) case to confirm the validity of the post processing. CoBLc
does not incorporate curvature terms, meaning some di�erence may be expected between the Nektar++ extracted profiles
and CoBLc, see Fig. 4.

E. Nektar++ Linearized Navier-Stokes

Nektar++ is also used to compute the unsteady linearized incompressible Navier-Stokes solutions (Nektar++ LNS)
for comparison with the more e�cient PSE and LNS stability codes. Contrary to the harmonic formulation of the LHNS
equations, which provide the long time asymptotic solution, Nektar++ LNS applies a time marching procedure. The
domain and method of solving is set up similarly to that of the baseflow cases [33] however, a finer mesh is required for
the Nektar++ LNS in order to obtain converged solutions. This resulted in using another embedded mesh consisting of
only the upper surface geometry. The wall conditions are modified to provide suction / blowing across one Nektar++

7

D
ow

nl
oa

de
d 

by
 IM

PE
R

IA
L 

C
O

LL
EG

E 
LO

N
D

O
N

 o
n 

M
ar

ch
 8

, 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

6.
20

19
-3

53
3 



Fig. 4 Clean: Comparison with Nektar++ extracted base flow profiles and the boundary layer solver(CoBLc)

generated profiles at 10% chord. All values are real physical quantities. Nektar++ solutions are represented

with black, dashed, lines and CoBLc with red, solid, lines. Top row shows u, v and w, second and third rows

shows first and second derivatives, respectively, in the normal direction with respect to u, v and w and the last

row is the first derivative in the stream-wise direction with respect to u, v and w. There is no v̄s since this is not

computed by CoBLc.
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Fig. 5 Clean AERAST geometry LHNS and Nektar++ LNS comparison. Left: Stationary CFI, � = 500. Right:

Traveling CFI, � = 440,! = 420

surface element thickness to introduce the perturbation. The span-wise domain is configured such that it is the same
length scale as the introduced CFI and periodic boundary conditions are then applied.

When running the PSE solver on the clean geometry and sweeping through the wave numbers, the most destabilizing
stationary CFI is found to be � = 500 for the stationary case and � = 440,! = 420 for the traveling case. The
amplitude growth predicted by the PSE and LHNS codes have been compared with the Nektar++ LNS computation.
Both PSE and LHNS codes have been computed including and excluding curvature terms. CFI amplitude plots are
given by normalizing the maximum of the steam-wise disturbance velocity with the boundary layer edge velocity at
each stream-wise location. As expected, we see a stabilizing e�ect from the inclusion of the curvature terms which is in
good agreement with the Nektar++ LNS solution, see Fig. 5. All analyses to follow will hence be computed with the
inclusion of curvature. The PSE seems to be predicting the disturbance amplitudes very well in the absence of the
roughness, and at the benefit of reduced computational cost (less than a second).

III. Results

Base flow profiles are computed with the AERAST geometry at a Mach number of 0.3 and a negative 4.5° incidence,
in order to obtain agreement with the experimentally determined pressure gradient measurements of Saeed et al. [26].
Example steady base flows, derived from the DNS, for the largest roughness cases can be seen in Fig. 6. Lengths of
separation bubbles with respect to the roughness height, bh = bl/h, (and width, bw = bl/hw , in the localized bump
case) are listed in table 2 for the varying roughness shapes. We can see that the conjugation of the FFS and BFS causes
much more elongated bubbles for the down-stream reverse flow.

For the stability analysis, a range of CFI wave numbers and frequencies must be computed for each roughness case
in order to find the most destabilizing CFI. A roughness of one height may trigger growth of one wavelength but not for
another. This also applies to the di�erent shape of roughness, meaning that a range of CFI’s need to be scanned for each
case. This is achieved rapidly by application of the PSE equations. Unfortunately, we will see the PSE and PSEh are
unable to capture the presence of the roughness correctly. However, LHNS and LHNSh codes are able to model the
influence of the roughness in the majority of cases. The LHNSh formulation generally predicts greater amplitude CF
disturbances.

A. Localised Bump

The composition of a FFS and BFS are placed 3.75mm apart to create the bump profile. All four heights of
roughness have been computed with the PSE and PSEh codes for stationary and traveling CFI. N-factor growth curves
are displayed in Fig. 7; the clean case has been added for reference. According to both codes there seems to be a
stabilization as the bump height is increased, contrary to the literature, which could be due to a number of reasons.
Firstly, many stream-wise station locations need to be neglected during the computation in order to attain a solution.
This is due to the stream-wise derivative terms exhibiting very large gradient changes over the edges of the bump, where
there are rapid variations in geometry. The roughness, although considered large scale in this paper, is still very small

9

D
ow

nl
oa

de
d 

by
 IM

PE
R

IA
L 

C
O

LL
EG

E 
LO

N
D

O
N

 o
n 

M
ar

ch
 8

, 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

6.
20

19
-3

53
3 



shape roughness height forward bw forward bh backward bw backward bh

bump 413 0.03 0.25 0.87 7.98
bump 618.7 0.09 0.56 1.74 10.57
bump 825 0.20 0.91 2.69 12.22
bump 893 0.25 1.04 3.06 12.83
FFS 413 0.05
FFS 618.7 0.58
FFS 825 0.97
FFS 893 1.1
BFS 413 6.56
BFS 618.7 7.59
BFS 825 8.19
BFS 893 8.35

Table 2 Bubble lengths with relation to the roughness height, bh . For the bump case there are two separation

regions, before (forward) and after (backward) the bump, which have been related to bump width, bw , also.

meaning these neglected stations could be a result of satisfying the PSE step size restriction. As a consequence of
ignoring some stations, this can mean no profiles are selected over the edges of the bump where the curvature of the
roughness, dh/ds, holds a value. We can see this from bump heights 412.5 and 618.7 microns, which give exactly
the same predictions for PSE and PSEh computations. We could also have an event where a station along one edge
of the bump is taken, but not its corresponding other edge, resulting in a positive dh/ds term in one instance but its
corresponding negative contribution not captured in the PSE computation. This could be the case for the higher bump
profiles which show some slight di�erences between PSE and PSEh. The major drawback of the PSE is that it will fail
to compute a valid solution if the instability wavelength is greater than, or of the same length as, the roughness width
[7]. Here the wavelength of the CFI is around 6 mm and the bump 3.75 mm meaning the bump region is unfortunately
too small to be captured by the PSE or PSEh. Sumariva and Hein [36] also came across these problems when trying to
compute PSE solutions. PSE results from here-on will be omitted since they give much the same results.

LHNS and LHNSh computations for stationary and traveling CFI are shown in Fig. 8 for all bump heights. The
instability is generated by a wall forcing placed just upstream of the clean neutral point (3% chord) and the bump is
located at 10%. Both codes are generally consistent with the literature for stationary CFI, where increased step height
triggers greater amplification of instability [22, 25, 37]. LHNSh predicts an even larger growth of instability for all
bump heights larger than 618.7 microns, in comparison to the LHNS formulation. The 412.5 micron case gives a similar
result to the clean case for both LHNS and LHNSh codes, showing the smallest bump height does not have any overall
e�ect on the growth of the CFI; this is in agreement with observations in the experimental work of Saeed et al. [26].
According to the LHNSh code, the next step height, 618.7, also predicts no overall di�erence to the clean case, as the
bump height increases further we begin to see an increased forward movement in transition. The LHNS code seems to
predict more amplification of CFI for the 618.7 case than the 825 case, which seems very unlikely. This could possibly
be due to having used the PSE to find the most unstable CFI wave numbers. Since the PSE in unable to resolve the
roughness region, the most unstable wave number it finds may not, truly, be the most unstable wave number. Perhaps in
this case, the PSE actually found a more unstable wave number for the 618.7 case than the 815. Given the di�erences
between the two LHNS / LHNSh solutions we are led to conclude that the LHNS formulation neglects some crucial role
of the perturbed us field locally at the bump geometry change. Looking at the traveling CFI curves, there is a similar
trend to the results as for the stationary case but the growth is amplified ten times that of the stationary case. It is
noticeable that the clean case is more amplified than the smaller bump heights (in the LHNSh codes), again we reason
that this could due to the use of the PSE to select the most unstable frequencies which are not, in fact, the truly most
unstable wave number-frequency combinations. Contrary to the work of Saeed et al. [26], the LHNSh code predicts that
the second highest bump height, 618.7, predicts no forward movement of transition.

A direct comparison of the two codes for the largest bump case can be seen in Fig. 9. Here we can see the LHNSh
code predicts a greater amplification of CFI than LHNS for both stationary and traveling CFI. Evaluating all heights, it
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Fig. 6 Baseflow solutions at 10% chord, 893 microns for the bump (top left), FFS (top right) and BFS (bottom

left). Contours show stream-wise velocity, black lines show the outer boundary layer and free-stream flow.

White lines show flow within the inner boundary layer and dashed white lines denote separation bubbles.

would appear that if there was a critical bump height to cause transition, it must be located somewhere between 37% to
48% of the boundary layer thickness.

Contours of the stream-wise velocity perturbation for the largest bump case are depicted in Fig. 10 for stationary
and traveling CFI. Again, each stream-wise location is normalized with the maximum stream-wise velocity at each
point. The separation bubble is made visible by the dashed black lines and we see the disturbances structure convecting
over the bump and recirculation zone. As in the previous figure, the traveling CFI is much more amplified than the
stationary CF. Generally it seems that as the bump height increases, the CFIs which are most destabilized become longer
in wavelength, this is consistent with Tufts et al. [22]. We can see the instability is modified by the bump corners and
triggers a rapid increase in N-factor for the LHNS code. This characteristic is very similar to findings of Sumariva
and Hein [36] who looked at a sharp cornered bump (but in context of 2D base flows). However when looking at the
LHNSh code, although there still exists this origination from the upstream corner of the bump, the CFI seems to be
more greatly amplified as it moves downstream of the bubble region, suggesting an interaction with the bubble, as has
been indicated in other works [19, 22, 23].

We have compared the height of the clean crossflow vortex (CFV) with that of the height of the step. We thought
that we might extrapolate the postulation from Tufts et al. [22] for when the step height of a FFS, h, is larger than that of
the CFV height, yc , there is a constructive interaction between the helical flow downstream of the FFS and the CFV. The
height of the CFV varies with each wavelength of CFI introduced. This means the clean case needs to be evaluated for
each of the corresponding most destabilizing wavelengths for the bump cases. When examining the perturbed velocity
profiles, the height of the CFV is between 1463 microns (smallest bump: � = 440) to 1509 microns (largest bump:
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Fig. 7 Bump at 10% chord: PSE calculation (dashed lines) and PSEh (solid lines) comparison of N-factor

growth of most unstable CFI for all roughness heights. Blue for 412.5 microns, red for 618.7, green for 825 and

black for 893 microns. Left: Stationary CFI. Right: Traveling CFI

Fig. 8 Bump at 10% chord: Comparison of cross flow instability of all bump heights. Yellow points denote

the clean geometry, blue circles for 412.5 microns, red squares for 618.7, green downward pointing triangles for

825 and black upward pointing triangles for 893 microns. Dashed vertical lines denote the width of the bump.

Left: Stationary CFI. Right: Traveling CFI. Upper: LHNS calculation. Lower: LHNSh calculation
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Fig. 9 Bump at 10% chord with height of 893 microns: LHNSh (solid lines) and LHNS(dashed lines) compar-

ison of crossflow instability. Left: Stationary CFI. Right: Traveling CFI.

� = 390) for the stationary case, and 1417 microns (smallest bump: � = 410,! = 380) to 1462 microns (smallest bump:
� = 350,! = 340) for the traveling case. All of these CFV heights are larger than any of the bump heights, meaning
this reasoning is not appropriate for the bump configuration. In this instance, there is also no recirculation bubble on top
of the bump for there to be destabilizing interaction with the CFI, there only exists one prior to the FFS component and
after the BFS component. This suggests, that for the bump case, it could be one of these helical flows which the CFI is
interacting with. Given the results in Fig. 10, it is likely to be the downstream helical flow. When examining these
instability velocity profiles, we have noticed max (

p
û2 + ŵ2) seems to correlate with the bump height. The value of

max (
p

û2 + ŵ2) ranges from 646 to 692 microns in height, which is just higher than the second bump height.

B. Forward Facing Step (FFS)

The FFS case has been simulated for all four step heights at 10% chord. Similarly for the bump case, the PSE fails
to compute a reliable solution. Again, this is likely due to strong stream-wise gradients and the step feature being too
short compared to the CFI wavelength, thereby violating the PSE formulation.

The LHNS and LHNSh codes both predict an increase in growth coinciding with increased step height, see Fig. 11.
The most destabilized wave numbers still seem to be decreasing as FFS height increases, but at a much more gradual rate
than the bump case. For the stationary CF case, the LHNS code predicts an amplification in growth of the smallest bump
case, compared with the clean. This seems an unlikely prediction since for the bump case no di�erence in amplitudes
arose between the LHNS/LHNSh models and the bump case has a BFS component which, from the literature, we know
to be much more detrimental to the flow. This leads us to believe the LHNSh result is more reliable. The increase in
growth for the 618 micron case seems reasonable since it is predicted by both codes. Again, comparing these heights to
the postulation from Tufts et al. [22], we find that the CFV core height for each case is larger than all of the FFS heights.
This is probably due to not having the second recirculation that Tufts et al. have in their cases. However, since we still
see an amplification of CFI for the larger three FFS heights, there must be some other mechanism interacting with the
stationary CFI. We can see the traveling CF is much more dangerous compared to the stationary CF case. Looking a the
LHNS result, we would not expect 825 micron case to move the transition front further forward than the 893 micron
case, again this merits the LHNSh code for seeming to give a more reliable result. The di�erence in amplitude predicted
by both codes is highlighted for the largest step height in Fig. 12.

Contour plots of the stream-wise perturbation field for the largest step height are depicted in Fig. 13. Again, we can
see that the immediate growth of perturbation seems to be triggered by the step corner, as can clearly be seen in the
lower right image. Contrary to the bump case, there is no separation bubble present downstream of the step, however the
corner does seem to trigger more rapid growth of CF disturbance. When examining û perturbation profiles we find that
at the step region there are two peaks which form in the perturbation profile, the larger of which is closer to the wall. As
we move downstream these peaks tend to merge into one; Eppink [24] also observed this feature when examining FFS.
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,

Fig. 10 Stream-wise perturbation field, |û|, for 893 micron bump at 10% chord.

Left: LHNS stationary case, � = 500. Right: LHNS traveling case, � = 400, ! = 550. Upper: LHNS solver.

Lower: LHNSh solver.

C. Backward Facing Step (BFS)

The BFS has proved much more di�cult to compute reliable stability analyses. Unsurprisingly, the PSE and PSEh
once again fail to capture the e�ect of the step. However, the PSE does seem to be selecting wave numbers reasonably
well since the lower wave numbers become more amplified due to the thickening of the boundary layer [38]. The LHNS
and LHNSh codes also struggle to produce a reliable solution. This is due, once again, to these strong stream-wise
gradient changes and the way in which the base flow is interpolated onto the computation grid. Usually a cubic spline
interpolation is applied in the stream-wise direction but this can cause spurious profiles in the region of the roughness.
The spline interpolation has been replaced with linear interpolation within this region but it still seems these gradient
changes are extremely large. This is perhaps to be expected since a BFS of half the height of a FFS may cause transition
[37]. Contour plots are shown in Fig. 14 to highlight the di�erences between LHNS and LHNSh. Until this feature, i.e.
the most correct procedure for interpolating very rapidly varying steady base flows profiles to the LNS defined grid is
resolved – further work and analysis is required before one can make definitive statements on the e�ect of the BFS on
the convecting CFs over the step.

IV. Conclusions

We have presented some very preliminary results of our work concerning the role of steps on swept wing flows,
and how pre-existing stationary and traveling CF disturbances are modified by the step feature. Two new roughness
incorporating codes, LHNSh and PSEh, are derived and tested on a swept wing with varying shapes and heights of step
placed at 10% chord. One of which is a bump shape, identical to the experimental work of Saeed et al. [26]; FFS and
BFS cases form part of the continuing investigations too. The three di�erent step types are evaluated for 4 heights
varying from 25% to 53% of the boundary layer thickness.

When applying the PSE / PSEh formulation to any of the roughness cases, the PSE is incapable of capturing the
growth of the instability as it convects over the feature. This is due to the presence of strong stream-wise gradients and
the minimum step size of the PSE being much larger than the resolution required for convergence over the roughness
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Fig. 11 FFS at 10% chord: Comparison of most destabilizing crossflow instability, though all bump heights.

Red for 412.5 microns, blue for 618.7, green for 825 and black for 893 microns.

Left: Stationary CFI. Right: Traveling CFI.

Upper: LHNS calculation. Lower: LHNSh calculation.

Fig. 12 FFS at 10% chord with height of 893 microns: LNSh (solid lines) and LNS(dashed lines) comparison

of crossflow instability. Left: Stationary CFI. Right: Traveling CFI.
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Fig. 13 Stream-wise perturbation field, |û|, for 893 micron FFS at 10% chord. Left: LHNS stationary case,

� = 460. Right: LHNS traveling case, � = 460, ! = 190. Upper: LHNS solver. Lower: LHNSh solver.

region. The LHNS and LHNSh, on the other hand, do manage to capture the bump and FFS with these strong and
very rapid stream-wise base flow variations. The LHNSh code generally predicts a greater increase in growth as the
disturbance convects over the step location and downstream. It is clear that this feature should be included not just in the
base flow terms, but also in the perturbed field model, if we wish to capture the growth of an instability within such
severe stream-wise changes in the boundary layer state. As is consistent with literature, the traveling CFs seem to be
much more detrimental to the flow than corresponding stationary CF.

We suspect that possibly, the criteria of Tufts et al. [22] can not be applied in these FFS cases, or extrapolated to the
other step cases, due to the absence of a reverse flow region on top of the step. Tufts et al. indicate that reducing the size
of the upper recirculation region decreases the impact of the FFS; the results in this paper (with the caveat of being very
preliminary results) seem contrary to observations of Tufts et al.. Vidales et al. [23] tend to agree with the method
proposed by Tufts et al., however they do not mention if a separation bubble exists on top of their step configuration. We
assume that one is present in order for them to have agreement. Since in our case there is no separation present, the
geometrical shape itself must be playing a role. Perhaps ramping the surface up to the FFS height or creating more
filleted corners could help to reduce the amplification of the disturbance.

The work presented here is on going to aid with characterizing the e�ect of surface roughness and steps on transition.
Validation of these results with Nektar++ LNS is currently work in progress along with computations for the BFS and
also evaluation of steps placed at 20% chord, also investigated in the experiments of Saeed et al. [26].
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Fig. 14 Stream-wise perturbation field, |û|, for 893 micron BFS at 10% chord. Left: LHNS stationary case,

� = 450. Right: LHNS traveling case, � = 450, ! = 490. Upper: LHNS solver. Lower: LHNSh solver.
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In the quest for laminar flow control on aircraft wings, quantifying the impact of structural
deformation on laminar-turbulent transition remains a challenge. The purpose of this work
is to numerically investigate the stability of two-dimensional incompressible boundary layers
developing on a flat-plate geometry with indented surfaces of di�erent depths. These surface
indentations generate laminar separation bubbles, known to have strong destabilizing e�ects
on Tollmien-Schlichting disturbances. The parallel e�ciency of the developed computational
tool based on state-of-the-art numerical libraries allows rapid parametric studies within the
usually expensive global stability analysis framework. Using an incompressible linearized
Navier-Stokes formulation, we use the perfectly matched layer method to absorb waves at the
inflow and outflow boundaries. Forced receptivity analysis is performed in order to investigate
the e�ect of the indentation region on the convecting Tollmien-Schlichting waves. Furthermore,
the likelihood of global temporal mechanisms arising is investigated through BiGlobal stability
analysis. The deepest surface indentation, which features a peak-reversed flow velocity of 9 % in
the laminar separation bubble, leads to significant levels of Tollmien-Schlichting amplification.
It is also characterized by two temporally unstable modes, namely a dominant, localized
stationary mode as well as a traveling Kelvin-Helmholtz mode.

I. Nomenclature
English symbols

A = discretized linear stability operator
B = discretized mass operator
F = non-dimensional frequency
f = frequency
H = roughness shape
h = indentation depth
i = imaginary unit
L = length scale
Ma = Mach number
n = outward normal vector
n = number of grid points
p = pressure
q = flow variables vector
q = finite-di�erence order
Rc = target reflection coe�cient for PML
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Re = Reynolds number
r = radial coordinate
s = stretching metric for PML
t = time coordinate
U = velocity scale
u = velocity field vector (u, v,w)
x = spatial coordinates vector (x, y, z)

Greek symbols

↵ = streamwise wavenumber
� = spanwise wavenumber
� = control volume boundary
� = grid clustering parameter
� = boundary layer thickness
" = infinitesimal quantity
⇣ = complex frequency shift for PML
⌘ = deformed wall-normal coordinate
✓ = transformed eigenvalue for shift-and-invert
 = grid compression factor for PML
� = indentation width
⌫ = kinematic viscosity
⇢ = density
� = damping profile for PML
⌧ = shift eigenvalue for shift-and-invert
 = discretized forcing vector
 = forcing vector
⌦ = control volume
! = angular frequency

Subscripts

i = imaginary part
r = real part
w = wall quantity
1 = free-stream quantity

Superscripts

⇤ = dimensional quantity
¯ = base variable
˜ = perturbation variable
ˆ = shape function or amplitude
˘ = stretched coordinate for PML

II. Introduction

D����� these pivotal times of climate change awareness, the transportation industry is facing public pressure over
action for curbing CO2 emissions. The success of the "flygskam" ("flying shame") movement in Sweden [1] and the

current debate on ending the kerosene tax exemption for airlines might resonate with aeronautical industry stakeholders
and increase their e�orts to develop fuel-saving technologies. Understanding and controlling the laminar-turbulent
transition of boundary layers is in line with these greener objectives. In the particular context of aircraft wings, the main
benefit of maximizing the extent of laminar flow past the leading edge is that turbulence significantly increases friction
drag and hence fuel consumption. The total drag of an aircraft would be reduced by approximately 16% if laminar flow
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were maintained on 40% of its surfaces including wings, nacelles as well as horizontal and vertical stabilizers [2].
The multifaceted transition process relies on an idealized succession of scenarios [3]. It is initiated by the receptivity

process, which describes how environmental disturbances impose their signature within a boundary layer and excite
fluctuations. In a low-amplitude disturbance environment, the linear growth of instabilities is followed by non-linear
mode interactions, secondary instabilities and finally by the breakdown into a turbulent state. However, this path
is certainly not unique; should the initial disturbance amplitude be su�ciently large, the breakdown to turbulence
may occur due to strongly amplifying mechanisms directly following the receptivity stage, bypassing the other stages.
Numerous bypass transition processes were linked to a transient growth phenomenon [4], referring to initially small
disturbances undergoing an algebraic growth before exponential decay.

In flat-plate subsonic flows, the dominant instability modes are the Tollmien-Schlichting (TS) disturbances, arising
from a viscous instability. In practice, the manner in which TS disturbances are generated in atmospheric flight is
assumed to be due to acoustic noise, turbulence and/or vorticity fields interacting with surface roughness, leading
to receptivity. Experimental observations demonstrate that transition is heavily dependent on the environmental
characteristics, which can also be influenced by three-dimensionality and free-stream conditions. Receptivity modeling
in stability analysis is a key requirement for accurate transition prediction, since it establishes the initial magnitude
of the fluctuations within a boundary layer which essentially dictates the possible path of its transition to turbulence.
Above a certain amplitude threshold, non-linear e�ects are amplified, interaction between higher-order harmonics plays
a significant role and leads to rapid transition to turbulence [5]. Thus, receptivity modeling is intrinsically linked to
understanding where, how and what type of non-linear processes set in and dictate the transition path.

On top of complex instability mechanisms emerging in cruise flight conditions, qualitatively and quantitatively
assessing how surface imperfections, or roughness elements, influence the stages of laminar-turbulent transition remains
a hurdle. On wings, examples include damage due to scratches, hail dents as well as residuals of grease and insects.
Natural excrescences formed by junctions between detachable leading edge and wing box components as well as more
three-dimensional features such as rivet heads are also thought of having a non-negligible impact on transition. Such
surface irregularities generally act as receptivity sites and lead to three-dimensional modifications to the basic flow state,
which then impact upon disturbance convection and evolution.

Localized surface irregularities can induce a strong adverse pressure gradient in the streamwise direction and
separate the boundary layer from the surface on which it is developing. This creates a separation or recirculation
bubble if the flow reattaches further downstream. Although such a laminar separation bubble (LSB) might be stable
due to limited energy exchange with the outer flow, it has been found [6, 7] that a boundary layer flow in the presence
of a LSB is first globally unstable due to a stationary or low-frequency three-dimensional mode. Barkley et al. [7]
highlighted how the critical absolute instability of a two-dimensional flow with a backward-facing step was localized
in the LSB. Similar observations were noted in the case of a flow over a bump [8]. Applying direct and adjoint
analysis, Marquet et al. [9] described two instability mechanisms, namely lift-up and convective non-normalities, in a
recirculation bubble behind a smooth backward-facing step. Xu et al. [10] devised geometrical parameter correlations
for the stabilization or destabilization of TS waves in the presence of smooth forward facing steps. The topology of LSBs
was also analyzed to describe the instability characteristics of the global mode [11]. Marquet et al. [12] compared the
strength of resonator dynamics and amplifier dynamics in a low-Reynolds-number recirculation bubble. Additionally,
the existence of two global linear mechanisms was highlighted [13], unveiling a centrifugal instability leading to a steady
three-dimensionalization of the LSB as well as oscillatory behavior dependent upon regions of absolute inflectional
instability. A criterion for absolute instability was given in terms of the peak reversed-flow velocity in the LSB. A
threshold as low as 7 % of peak reversed flow was found by Rodríguez and Theofilis [11] for two-dimensional LSBs.
Later, Rodríguez et al. [13] stated that the two-dimensional absolute instability is inactive below 12 %, a higher value
than the three-dimensional instability threshold of 7 %.

Given the multitude of laminar-turbulent transition road maps in nature, di�erent approaches to model laminar-
turbulent transition mechanisms have been developed. Standard methodologies ranging from local Orr-Sommerfeld
(OS) theory, non-local linear and non-linear Parabolized Stability Equations (PSE) are mature and have been extensively
used, with fine agreement with experiments. In recent work, Thomas et al. [14] found good agreement when comparing
results based on the full Linearized Navier-Stokes (LNS) equations with results from the lower-order PSE form in their
investigation of flow destabilization due to LSBs arising on two-dimensional wavy airfoils. Due to strong base flow
gradients in the vicinity of LSBs, it is known that at some stage, alternative mechanisms take over in the turbulence
tripping process. Abrupt transition due to bypass mechanisms may become prominent; presently, the changeover from
convective-type breakdown to bypass processes is an area of significant uncertainty. The development of e�cient
numerical techniques, which allow such analyses to be undertaken, is currently not as advanced relative to techniques
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devised for treating adequately convective instabilities and at a cheap computational cost. Global stability analysis
holds potential for yielding more complex, localized two-and-a-half dimensional or three-dimensional instability modes
distinct from those determined with PSE-type analyses.

Recently, Xu et al. [15] computed incompressible boundary layer flows convecting over localized three-dimensional
surface indentations, where LSBs arose in the confined area of the indentation. Their presence was found to lead to
rapid TS destabilization and thus tripping the laminar flow to turbulence, even at low Reynolds numbers. They studied
how a preexisting two-dimensional TS disturbance is transformed to a three-dimensional form as it convects through the
three-dimensional separation bubble. The LSBs were found to have a significant impact on the advected disturbances,
in that the TS destabilization was linked to the inflectional instability of the separated shear layer. As an extension
to Xu et al. studies, the main objective of the present work is to investigate the existence of unstable, global temporal
eigenmodes related to the two-dimensional LSBs with BiGlobal analysis. Di�erent indentation depths, and thus the
impact of di�erent separation bubble intensities, are examined to assess the potential existence of global modes. The
other issue examined, with forced receptivity analysis, is the e�ect of naturally distributed two-dimensional surface
forcing on preexisting TS disturbances as they convect through the LSBs.

The rest of this paper is organized as follows. Section III presents the mathematical formulation of the global stability
analysis approach together with an absorbing boundary condition treatment via the perfectly matched layer framework.
The numerical process used in the parallel computational tool that has been developed is presented in section IV. Results
of temporal BiGlobal analysis and forced receptivity analysis are presented in section V. We conclude by highlighting
the main findings of this study.

III. Mathematical Formulation

A. Governing equations for linear stability theory
As a means to study the modal evolution of disturbances in incompressible boundary-layer flows, the framework of

Linear Stability Theory (LST) is used. In the Cartesian coordinates considered, q = (p, u, v,w)T is defined as a compact
representation of the instantaneous flow quantities where p is the pressure, u the streamwise velocity, v the wall-normal
velocity and w the spanwise velocity. One can decompose the instantaneous quantities into a steady-state part and an
infinitesimal part such that, for " ⌧ 1,

q(x, t) = q̄(x) + " q̃(x, t) (1)

The infinitesimal perturbations " q̃ are superimposed on a steady-state equilibrium q̄ called the base flow, which is
laminar and has finite-amplitude in a domain ⌦ ⇢ R2. Its boundary is denoted � = @⌦. Introducing the decomposition
of Eq. (1) in the non-dimensional Navier-Stokes equations, linearizing around the base flow and retaining the first-order
perturbation terms O(") yields the Linearized Navier-Stokes (LNS) equations, which read

�p̃ + r · ((ū · r)ũ) + r · ((ũ · r)ū) = 0 (x, t) 2 ⌦ ⇥R+ (2a)
@ ũ

@t
+ (ū · r)ũ + (ũ · r)ū + rp̃ �

1
Re�ũ = 0 (x, t) 2 ⌦ ⇥R+ (2b)

ũ =  (x, t) 2 � ⇥R+ (2c)

where  is a forcing term applied on the boundary. The LNS Eqs. (2) are rendered dimensionless with a length scale
L and a velocity scale chosen as the free-stream velocity U1. The Reynolds number Re = U1L/⌫1 quantifies the
ratio of inertial e�ects to viscous e�ects, where ⌫1 is the free-stream kinematic viscosity. Moreover, the pressure
is non-dimensionalized by ⇢1U

2
1 and the time coordinate by L/U1. Unless specified with units, all the introduced

quantities in the rest of the paper are non-dimensionalized with these scales.
Note that the Linearized Pressure Poisson Equation (LPPE) formulation of the LNS equations is used, where a

Poisson equation for the pressure, shown in Eq. (2a) substitutes for the traditionally used continuity equation r · ũ = 0.
Such a formulation was notably suggested by Johnston and Liu [16] and further discussed by Shiroko� and Rosales [17]
for the full non-linear Navier-Stokes equations. In the standard "continuity-momentum", or primitive formulation of
the Navier-Stokes equations, the pressure plays the role of a Lagrange multiplier and does not appear itself but solely
through its gradient. When spatially discretizing this formulation on a collocated grid with centered finite di�erences,
this lack of information leads to a non-physical pressure field formed of sawtooth patterns satisfying the Navier-Stokes
equations, called "checkerboard instability".

4

D
ow

nl
oa

de
d 

by
 IM

PE
R

IA
L 

C
O

LL
EG

E 
LO

N
D

O
N

 o
n 

M
ar

ch
 8

, 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

6.
20

19
-3

53
7 



In contrast, the LPPE formulation circumvents the checkerboard instability with additional information introduced
for the pressure. Using a descriptor state-space model approach, Dellar and Jones [18] demonstrated the well-posedness
of the formulation when the equations are discretized on a collocated grid. However, they commented that there
is no guarantee that the LPPE formulation is entirely dynamically equivalent to the LNS equations formulated in
primitive variables when spatially discretized. Therefore, special care is advised when investigating global stability
analysis problems with the LPPE-LNS equations as, for instance, spurious eigenvalues may arise. Besides, to be
mathematically equivalent to the primitive formulation, appropriate boundary conditions must be chosen to enforce
8(x, t) 2 � ⇥R+,r · ũ = 0, especially for the pressure at a no-slip boundary. Rempfer [19] explained that "it is illegal to
write down the momentum equation taken at the boundary and derive a pressure boundary condition from it by simply
projecting the result on the wall-normal coordinate." The choice of boundary conditions for the pressure is mentioned
in section V. To the best of our knowledge, it may be the first time that the full LPPE formulation has been used in
global stability analysis for the interior of the domain ⌦ as Theofilis [20] used the LPPE solely as a boundary condition
for the pressure at the wall, with a primitive LNS formulation in the interior.

B. Receptivity and BiGlobal analyses
For a steady base flow q̄, the separability between space and time coordinates allows the introduction of a Fourier

decomposition in time, and the linear stability analysis is carried out seeking solutions to Eqs. (2) under a wave-like
form,

q̃(x, y, z, t) = q̂(x, y)ei�z�i!t + c.c. (3)

In the above, ! is the angular frequency and q̂ the shape function. The parameter � can be physically interpreted as
a spanwise wavenumber related to a periodicity wavelength Lz = 2⇡/�. Furthermore, the abbreviation "c.c." means
that the complex conjugate of the perturbation is added, as the latter remains a real quantity. The assumption of
inhomogeneity in the streamwise and wall-normal directions coupled with periodicity in the spanwise spatial direction
is an approach adapted to analyze streamwise geometry deformation e�ects on the base flow. The base flow solely
depends on the streamwise and wall-normal coordinates, ū(x, y) and ūz = 0.

In the case where the receptivity of the flow to external forcing is analyzed, both ! and � are prescribed real
quantities. In this work, the response of the flow to disturbances generated by a small-scale, time-fluctuating surface
element located at the wall is examined, with its e�ect being modeled in the forcing term  . The assumption of
infinitesimal perturbations in Eq. (1) allows the problem to be governed by the LNS Eqs. (2), coupled with boundary
conditions for the velocity at the wall derived with a Taylor expansion treatment. The roughness shape "H(x, z, t) models
the time-periodic wall-forcing and is given by the Fourier representation H(x, z, t) = Ĥ(x)e

i�z�i!t . The components of
the wall-forcing vector  read

ûw(x) = �Ĥ(x)
@ū

@y
(x, 0) (4a)

v̂w(x) = �(Ĥ(x) + i!)
@v̄

@y
(x, 0) (4b)

ŵw(x) = �Ĥ(x)
@w̄

@y
(x, 0) (4c)

In another framework where, following the terminology introduced by Theofilis [21], we perform streamwise
temporal BiGlobal analysis, there is no forcing term  to the boundary value problem presented in Eqs. (2) and
the angular frequency ! becomes an unknown complex eigenvalue, whereas � remains a real, prescribed spanwise
wavenumber. The complex eigenvalue ! represents the asymptotic, long-time limit behavior of the investigated flow
perturbations in that the existence of one eigenvalue with a positive imaginary part (temporal growth rate) is a su�cient
condition for a globally unstable flow. The latter will preferentially amplify the state with the most positive eigenvalue in
time. Its real part !r represents the frequency of the perturbation. The corresponding eigenfunction, q̂(x, y) describes
its spatial shape.

C. The perfectly matched layer method
The choice of appropriate boundary conditions for the inflow and outflow regions in the context of global stability

analysis remains cumbersome and has been discussed in literature, notably by Groot et al. [22]. Ideally, the perturbation
field should be allowed to enter or exit the domain seamlessly, without physical or numerical reflection. Each flow
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perturbation variable should satisfy the local dispersion relation at these boundaries. Typical boundary conditions
include zero Dirichlet, extrapolation, Robin, a boundary condition based on Gaster transformation [23], a PSE-type
ansatz or a 1D-LST-type ansatz. These will either not appropriately close the system of Partial Di�erential Equations
(PDE) formed by the Eqs. (2) from a mathematical point of view, or have a limited domain of validity in the wavenumber
space. This leads to spurious eigenvalues arising in the spectra of eigenvalue problems, to a restriction of the modeled
physics and potentially to a contamination of the solution near the boundaries. Therefore, proper care is advised when
employing them.

In an e�ort to alleviate this issue, a generic boundary treatment that models an unbounded domain and prevents
reflections of spurious waves into its interior without resorting to empirical parameters has been adopted. The approach
is the Perfectly Matched Layer (PML) method, introduced in a seminal paper by Berenger [24] for electromagnetics. This
technique was extended to the linearized Euler and linearized Navier-Stokes equations by Hu et al. [25] and tested on
various flow configurations. The underlying idea behind the technique is to surround the physical domain with a layer of
grid points in which the same system as in Eqs. (2) is solved, but with an added dissipation term in order to absorb energy
and thereby prevent reflections o� the computational boundaries. This is achieved with a coordinate transformation that
can be seen as an analytic continuation of the LNS equations into a complex contour, where propagating waves are
gradually substituted by exponentially decaying waves within the PML. For example, consider a streamwise propagating
wave e

i↵x�i!t in the positive direction, with ↵ 2 R, ↵ > 0. If the following coordinate transformation is applied

x̆ = x +
i

!

π
x
�x(s)ds (5)

The wave ansatz with the stretched coordinate is then transformed to an evanescent wave

e
i↵x̆�i!t = exp

✓
�
↵

!

π
x
�x(s)ds

◆
e
i↵x�i!t (6)

which decays further downstream in any section of the domain where the damping profile �x is strictly positive. The
principle of adding a lossy layer at the outflow of the physical domain becomes obvious. It should be noted that the
same absorption benefit is obtained with a PML added at the inflow, since the upstream propagating waves ↵ < 0 would
also decay in such a region in the �x direction. Figure 1 provides a schematic overview of the method with absorbing
layers present at the inflow, at the outflow as well as in the free-stream region of the computational domain.

σx ̸= 0

σy ̸= 0

σx ̸= 0

U∞

σx ̸= 0

σy ̸= 0

σx = 0 σy = 0

σx ̸= 0

σy ̸= 0

Fig. 1 Schematic representation of the PML method, with lossy layers in the streamwise and wall-normal
directions.

As the name implies, the absorption should be "perfect" for the continuous problem and, in theory, should yield a
zero reflection coe�cient for all angles of incidence and frequencies at the interface between the physical domain and
the lossy layer. After discretization of the governing equations, reflections unavoidably arise, but with a negligible
amplitude. From a practical point of view, implementing the PML coordinate stretching for the formulation based on
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the LNS Eqs. (2) is equivalent to changing the first order spatial derivatives to

@

@ x̆
=

1
1 �

�x
i!

@

@x
=

1
sx

@

@x
(7)

The second order derivatives are obtained in the same manner using the chain rule. The subscript "x" does not mean a
partial derivative but rather specifies the spatial direction where the PML extends. Devised in the frequency domain,
the method is well adapted to suit the time-harmonic LNS approach followed here. It is also easily extended to two
dimensions, where contributions from the di�erent layers are simply summed at the corners. However, in this work
the absorption treatment is mainly needed in the streamwise direction. The implemented PML formulation for the
current analysis is based on the contribution from Komatitsch and Martin [26]. It is an extension devised to enhance the
absorbing capability for grazing incident waves, the latter of which are spuriously reflected with the classical discrete
PML methods. This formulation consists of a more general coordinate stretching sx than in Eq. (7) with the introduction
of new real variables such that

sx = x �
�x

i! + ⇣x
(8)

where �x � 0 is defined such that �x > 0 in the PML and �x = 0 in the physical domain. x � 1 is a grid compression
(or stretching) function. It further increases the wave damping since an additional factor e

�x↵i is introduced inside
the lossy layer. The complex frequency shift, ⇣x � 0 introduces a shifting of the poles and contributes to mitigating
the issue of absorbing waves impinging on the interface at grazing incidence. These functions defining the coordinate
transformation must be su�ciently smooth to minimize numerical artifacts. Following Komatitsch and Martin [26], the
damping profile is defined as a polynomial law

�x = �max

✓
x

LPML

◆2
(9)

where LPML is the width of the layer. The grid compression function is similarly written and reads

x = 1 + (max � 1)
✓

x

LPML

◆2
(10)

The only literature contribution in which global stability analysis is performed with the aforementioned, simple
stretching given by Eq. (7) is Merle [27], who applied the PML to study the analysis of laminar compressible flow
over a bump and over an open cavity. Ran et al. [28] did not employ the PML method per se, but incorporated sponge
layers implemented with a source term in the LNS equations and studied their influence on the temporal spectrum of a
developing Blasius boundary layer profile. Although there is no contribution directly involving the use of the more
sophisticated stretching of Eq. (8) with the LNS equations, Martin and Couder-Castaneda [29] applied the method for an
evanescent treatment at the outflow boundary for a supersonic flow in a di�user with non-linear Navier-Stokes equations.
This yields su�cient foundation for the application of the method in the formulation involved in this work, which marks
the first application of the PML method based on (8) with incompressible LNS equations and global stability analysis.

IV. Numerical Approach

A. Base flow computations
The three-dimensional base flows were computed by Xu et al. [15] by means of Direct Numerical Simulation (DNS)

using a spectral/hp element discretization within the Nektar++ package, which supports h (grid size) refinement and
p (polynomial order) refinement [30]. The full non-linear Navier-Stokes equations were solved with a sti�y stable
splitting scheme which decouples the velocity and pressure fields. Time integration was achieved by a second-order
accurate implicit-explicit (IMEX) scheme. The spectral element method was applied with a hybrid mesh, quadrilaterals
and triangles, with 5425 elements and a 5th-degree polynomial expansion imposed in the streamwise direction. 4876
elements form the mesh in the wall-normal direction. A Fourier expansion with 180 modes was performed in the
spanwise direction. The localized surface deformation is defined, in the streamwise direction, as

⌘(r) =

8>><
>>:
�

h

2

✓
cos

✓
2⇡r
�

◆
+ 1

◆
, r  �/2

0, r > �/2
(11)
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in which the radial coordinate r =
p
(x � xc)

2 measures the distance to the indentation center position xc . A convergence
study by p-type refinement was performed to ensure mesh independence. Spanwise Fourier modes independence
was also reached and steady solutions were obtained by time-marching the equations until an appropriate steady-state
convergence criterion was met.

Fig. 2 Contours of non-dimensional vorticity |r ⇥ ū | of the base flows. Left: h = 0.81 mm. Middle: h =

1.62 mm. Right: h = 2.17 mm. The white dashed line indicates the limit of the reversed streamwise velocity
region.

Across the whole computational domain, the L2-norm relative error of the computed velocity fields was less than
10�6. Figure 2 depicts the two-dimensional base flows for three di�erent indentation depths, extracted along the
streamwise symmetric plane of the three-dimensional indentations. The flows can be considered as incompressible
since the Mach number satisfies Ma = 0.05 ⌧ 0.3. Moreover, the free-stream unit Reynolds number is Re = 1.2 ⇥ 106

with a reference free-stream velocity U1 = 18 m s�1. The indentation width is � = 81 mm. Base flows for di�erent
indentation depths were computed, namely h = 0.81 mm, h = 1.62 mm and h = 2.17 mm. The intensity of the LSB
appears to grow with increasing depth and increasing peak reversed-flow velocity, the latter expressed as percentages.
The cases respectively correspond to �/h = 100 (0 %), �/h = 50 (3 %) and �/h = 37.3 (9 %). For further details, the
reader is referred to Xu et al. [15].

B. Receptivity and BiGlobal computations
The computational procedure is presented in what follows. After the discretization of the LNS Eqs. (2) on ⌦, it is

necessary to solve, for a receptivity-type problem a linear system

Aq̂ =  (12)

For a temporal BiGlobal approach, a Generalized Eigenvalue Problem (GEVP) must be solved, which has the form of

Aq̂ = !Bq̂ (13)

where A, B are matrix operators discretizing the governing equations and  is the vector incorporating the discretized
wall-forcing components. All incorporate the boundary conditions. The discretization is performed with the FD-q
method, developed by Hermanns and Hernández [31]. It is a stable, high-order finite-di�erence method based on
a non-uniform grid that minimizes the Lagrange interpolation error, in order to alleviate the well-known Runge
phenomenon and its spurious oscillations near the domain boundaries. The method can be seen as an intermediate
between a "classic" finite-di�erence method and Chebyshev spectral collocation. Compact finite-di�erence stencils lead
to non-negligible memory consumption and computation time gains while a near spectral-like accuracy is reached.

The base flow q̄ is interpolated on a regular grid using high-order B-splines. The surface deformation embodied by
the indentation geometry is enclosed in the Jacobian of the mapping from the physical domain to the computational
domain. In addition, we use a bi-quadratic mapping [32] that divides the wall-normal domain into three regions with an
equal number of points to optimize the grid distribution in the near-wall region and hence appropriately capture the TS
or global mode structures. In the streamwise direction, the grid is clustered around the maximum depth location of the
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indentations with an interior contraction [33] coupled with the function tan(�⇡x)/tan(�⇡), where � controls the level of
grid clustering.

The computational tool that has been developed relies on state-of-the-art numerical libraries in order to exploit both
parallel e�ciency and robustness. The formation of matrix operators A, B as well as of the right-hand-side vector  
is performed in parallel with the suite of data structures and routines PETSc [34]. The linear system formulated in
Eq. (12) is solved with the sparse, multifrontal solver MUMPS [35] based on LU-factorization.

The parallel library SLEPc [36] is used to solve the GEVP of Eq. (13) with a Krylov-Schur method. It belongs
to the class of Krylov subspace methods and allows computation of a portion of interest in the eigenvalue spectrum.
The original problem is projected to a subspace of a significantly smaller dimension, whose associated eigenpairs
are the best approximations to the original eigenvalue problem. Due to the absence of a time derivative in the LPPE
shown in Eq. (2a) and the enforcement of some boundary conditions, the mass matrix B is singular. Hence, a spectral
transformation such as the shift-and-invert approach must be employed to solve the GEVP. In general, the convergence
of the Krylov-Schur algorithm is optimal for eigenvalues lying at the spectrum extremities, and it is harder to extract
eigenvalues located further into the interior. However, the regions of interest for linear stability problems of the kind
considered here are typically located next to the origin. Using a shift-and-invert transformation bears the advantage of
enhancing convergence of the eigenpairs in the vicinity of an interior target, or shift ⌧. The original GEVP is transformed
into

(A � ⌧B)�1
Bq̂ = ✓Bq̂ (14)

The eigenvector q̂ remains unmodified, while the relation between the original eigenvalue ! and the transformed
eigenvalue ✓ is

✓ = 1/(! � ⌧) (15)

The algorithm is parallel and the required matrix inversion in the shift-and-invert operator included in Eq. (14) is also
performed in parallel, by means of LU-factorization with MUMPS. The downside of the shift-and-invert approach is the
constraint of manually prescribing shift values in the complex plane. Finally, a balancing technique is applied on the
shift-and-invert operator in an attempt to curb round-o� errors and maintain the accuracy of the computed eigenpairs to
the requested level.

V. Results
For the computations performed in this work, a total of nx = 1500 grid points were used in the streamwise direction

and ny = 100 in the wall-normal direction. The chosen length scale L is the corresponding zero pressure gradient Blasius
boundary layer thickness �h = 0.735 mm at xc . The computational domain extends from Re� = 600 to Re� = 1149
in the streamwise direction, that is over a distance of roughly 10�. Furthermore, the far-field boundary, where the
perturbation field is assumed to vanish, is set su�ciently far away from the wall at y = 150�h in an attempt to reduce
any influence of the domain truncation on the solution in the interior of the domain. Following Johnston and Liu [16], a
Neumann boundary condition is imposed at the wall for the pressure

@ p̂

@n
+

1
Re (r ⇥ r ⇥ û) · n = 0 (16)

A FD-6 discretization is employed in the streamwise direction while high accuracy is targeted in the wall-normal
direction with a FD-12 method. The streamwise grid is clustered near the indentation area with � = 0.4.

With this set of parameters, the time spent on setting up and solving a two-dimensional, forced receptivity problem
is 1 minute and 10 seconds. For a temporal BiGlobal problem, depending on the spectrum distribution and on the shift
value, the computation time is between 10 minutes and 1 hour. In total, 16 MPI (Message Passing Interface) processes
were used on a cluster node of 2 sockets and 8 cores per socket, with Intel® Xeon® E5-2680 (Sandy Bridge) CPU
architecture.

A. Receptivity to wall-forcing
In the first instance, we investigate the destabilization of TS waves generated by a small-scale, time-periodic surface

element placed ahead of the surface indentation. The surface actuation generates a purely two-dimensional perturbation
field, that is � = 0. A Gaussian profile defines the streamwise surface deformation shape of the forcing as shown in
Fig. 3. Its maximum is located 450 mm after the nominal leading edge, or roughly 1.97� before the streamwise station
marking the beginning of the indentation. Its maximum deformation o� the base surface is 0.25 mm which is negligible
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relative to the indentation depth h. The full width at half-maximum is �/18 = 4.5 mm. Naturally, within the scope of
the linearized framework, the deformation maximum height prescribed in the analysis is in fact irrelevant since any
amplitude result can be simply scaled to fit.

Fig. 3 Wall-forcing shape Ĥ enforced to generate a TS wave upstream of the indentation area.

We impose an absorbing boundary treatment with PMLs at the inflow and at the outflow of the computational
domain, with width 40 mm corresponding to approximately �/2. In practice, an established rule of thumb is that a PML
width of at least half the wavelength of the wave to be damped is su�cient. The maximum grid compression parameter
was set to max = 6, with a zero complex frequency shift. The target reflection coe�cient is Rc = 0.01%. In a similar
manner as Martin and Couder-Castaneda [29], the maximum value of the damping profile is computed as

�max = �
3 max⌦{| ū |} log(Rc)

2LPML
(17)

These settings allow an e�cient damping of the perturbation field as demonstrated in Fig. 4. The increasing amplitude
of the spatially developing TS structures in the wake of the indentation region smoothly vanishes between the PML
interface and the outflow boundary of the domain, where a zero Dirichlet boundary condition is imposed.

(a) Perturbation pressure p̂i (b) Perturbation streamwise velocity ûi

Fig. 4 Contours of perturbation variables for the h = 0.81 mm case, zoomed in near the outflow and the wall
region. The dashed line ( ) indicates the start of the PML region.

The prescribed frequency of the TS wave is f = 172 Hz and corresponds to a non-dimensional frequency of
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F = 106
⇥ 2⇡ f ⌫1/U2

1 = 50. Figure 5 depicts the evolution of the maximum amplitude of û across the streamwise
direction for the three di�erent indentation depths. Results from the present LNS-based receptivity approach are
compared with the PSE-3D results of Gowree et al. [37]. It is obvious that the indentation region acts as a destabilizer
of the TS wave. Unlike the receptivity approach where initial amplitude information is computed as part of the solution

Fig. 5 Maximum amplitude of the TS wave. LNS results: ( ) h = 0.81 mm, ( ) h = 1.62 mm, ( ) h = 2.17 mm.
Corresponding dashed lines are PSE-3D results from Gowree et al. [37]. The wall-roughness forcing ( ) is
located upstream of the indentation region ( ).

process, PSE-based theory only yields the streamwise evolution of the perturbation without quantitative information
about the imposed initial disturbance level. In linear PSE simulations, a local, normalized eigenfunction of the same
frequency f is imposed at the inflow and the state of amplification is monitored relative to this initial disturbance
magnitude. An excellent match is noted between the two approaches when h = 0.81 mm. The discrepancies growing
with increasing depth may be due to a number of reasons. The underlying hypothesis of the PSE-3D is that of a slowly
varying streamwise base flow variation, whereas the LNS formulation makes no such assumption. Some streamwise
derivatives are neglected in the PSE-3D equations whereas they might be significant in the indentation region, given the
base flow gradients. However, it should also be noted that the PSE-3D performs spanwise plane marching, taking into
account the three-dimensionality of the base flow but the LNS-based simulations are purely two-dimensional.

For the h = 2.17 mm setting, the LNS approach predicts very large amplitudes in the wake of the indentation which
in all practical sense, should then undergo a strongly non-linear mechanism given the significant magnitude of the
disturbance. Nonetheless, of particular interest is the behavior predicted upstream of the indentation region. In Fig. 5,
the surface based Gaussian actuation is located at (x � xc)/� ⇡ �2.47 for all three indentations. The h = 0.81 mm and
h = 1.62 mm results are as expected in that the TS amplitudes decay significantly upstream of the actuation location,
grow linearly downstream and then undergo further destabilization as the waves convect over the indentation, and then
in the wake region. However, the behavior predicted for the h = 2.17 mm indentation is radically di�erent. Although
the location, shape and magnitude of actuation remain unchanged compared to the shallower indentations, we presume
that the low-magnitude forcing appears to be completely "swamped" by a very strong upstream e�ect arising from the
indentation field.

Next, a parametric sweep for a range of actuation frequencies f to determine the most destabilizing TS disturbances
is undertaken. We sweep f between 77 Hz and 229 Hz with a constant step of � f = 19 Hz. This corresponds to a
non-dimensional angular frequency ! in Eq. (4b) ranging between 0.02 and 0.06. The maximum amplitude of the TS
wave across the domain is monitored. Figures 6 and 7 present the evolution of the maximum amplitude for the frequency
range aforementioned, respectively for h = 0.81 mm and h = 1.62 mm. For all frequencies, a sudden amplitude increase
can be observed at about one-third of the way across the indentation region. Further downstream, amplification continues
except for frequencies above 200 Hz, approximately. For these higher frequencies the maximum amplitude decays in the
wake of the indentation. The e�ectiveness of the PML regions causing a significant reduction of the TS wave amplitudes
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in the outflow region is clearly evident.

Fig. 6 Evolution of the maximum streamwise amplitude û across the domain for the h = 0.81 mm case. The
arrow shows the direction in which frequency is increased.

Fig. 7 Evolution of the maximum streamwise amplitude û across the domain for the h = 1.62 mm case. The
arrow shows the direction in which frequency is increased.

These cases are relatively benign compared to the h = 2.17 mm case displayed in Fig. 8. In a more accentuated
manner than the two smaller depths, the streamwise location of the sharp rise in TS wave amplitude in the indentation
moves downstream as the wave frequency increases. Moreover, in all the frequency values examined, the wave
amplitudes continue growing substantially downstream of the indentation, until where the artificially imposed PML
domain becomes active. As alluded to earlier, we speculate strongly upstream propagating waves are predicted in all
cases, with only the PML at the inflow boundary acting to diminish wave amplitudes. Although the domain stretches
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approximately by 5� beyond the indentation, potential decay may occur further downstream. Of significant note is that
TS disturbance amplitudes increase by a factor of 106 relative to amplitude levels at the indentation center.

Fig. 8 Evolution of the maximum streamwise amplitude û across the domain for the h = 2.17 mm case. The
arrow shows the direction in which frequency is increased.

B. Temporal BiGlobal analysis
In this analysis, 600 eigenvalues are sought in the vicinity of the origin with a Krylov subspace of dimension 1200.

The relative tolerance for eigenvalue convergence is set to 10�10. The convergence of the Krylov-Schur algorithm
together with the shift-and-invert approach is significantly dependent upon how close the shift value is located to the
eigenvalues. Di�erent boundary treatments at the inflow and outflow are compared, including the PML introduced in
section III.C and a Robin-type radiation boundary condition defined as q̂x = i↵PSEq̂. ↵PSE is the most unstable local
streamwise wavenumber at the inflow or outflow location computed from a preliminary PSE analysis. When the PML
method is applied, one notes that the unknown ! appears in the denominator of the coordinate stretching in Eq. (7),
transforming the linear GEVP into a non-linear eigenvalue problem. We overcome this extra-di�culty by prescribing a
constant !̆ = 0.01 in the coordinate stretching, the value corresponding to the region of interest for !r . This artifice
cannot guarantee optimal e�ciency of the lossy layers for all angular frequencies of the perturbation modes that we
wish to damp at the boundaries.

Figure 9 presents the physically relevant portion of the temporal eigenvalue spectra for the indentations of depth
h = 1.62 mm and h = 2.17 mm with � = 0. The non-dimensional angular frequency is !r = �h!⇤

r/U1 and the
amplification rate !i is scaled in the same way. The eigenmodes forming the dense, inverse U-shaped, continuous
spectrum branches located near !i = �0.01 can be distinguished from branches including wall modes branches, TS
modes as well as "boundary condition" modes; these may be considered as physically spurious since they have a spatial
distribution localized exclusively at the outflow of the computational domain. Unfortunately, the computation of the
laminar boundary layer base flow was limited to approximately 5� positions downstream of the indentation streamwise
extent, thus restricting the computation of the full spatial streamwise mode structure. In addition, Lessha�t [38] states
that the numerical truncation of the computational domain is also known to introduce spurious eigenvalues.

We focus our attention on the few most unstable and least stable global modes retrieved by the analysis. All the
di�erent boundary treatments, including the PML, are able to recover the least stable global mode denoted S1 in
Fig. 9a as well as the unstable global modes indicated by S2 and S3 in Fig. 9b. No physically relevant temporal global
modes arose in the shallow h = 0.81 mm indentation which does not give rise to a LSB, nor features reversed flow.
That is the reason why the corresponding spectrum is not included. Note how the choice of boundary conditions
a�ects the spatial distribution of the spectra but not the global modes. Table 1 summarizes their numerical values.
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(a) h = 1.62 mm (b) h = 2.17 mm

Fig. 9 Temporal spectra obtained with � = 0, comparison between di�erent sets of inflow/outflow boundary
conditions. ( ): PML/PML. ( ): Zero Dirichlet/Robin. ( ): Robin/Robin. One of the symbols for the mode S1
is changed to ( ) for clarity.

Table 1 Least stable and most unstable global modes for the h = 1.62 mm and h = 2.17 mm cases, � = 0.

Mode Depth h Stability !r !i

S1 1.62 mm Stable +2.06 ⇥ 10�7
�9.66 ⇥ 10�4

S2 2.17 mm Unstable �1.78 ⇥ 10�9 +3.37 ⇥ 10�3

S3 2.17 mm Unstable +9.70 ⇥ 10�3 +2.55 ⇥ 10�4

Looking at the eigenvalue distribution, the h = 2.17 mm corresponding boundary layer is more temporally unstable than
the h = 1.62 mm case. As expected, the application of the PML method yields additional branches of non-physical
eigenvalues. The almost matching branches on the right-hand-side of Fig 9b may be arising from the imposition of Zero
Dirichlet inflow ( / ) and Robin-type outflow ( / ) boundary conditions.

The two unstable modes found in the case where the peak reversed-flow velocity is 9 % remain inactive in the
intermediate 3 % case. This is consistent with the observations of Rodríguez and Theofilis [11] but not in agreement
with the more recent 12 % threshold of Rodríguez et al. [13]. It highlights the possibility of the peak reversed-flow
criterion not being valid for all kinds of generated LSBs. Further criteria require investigation, such as the relative
position of the inflection point with respect to the recirculation region [39].

Next, we examine how the spatial distribution of these modes is a�ected by allowing the existence of spanwise
periodic modes through the non-dimensional spanwise wavenumber � = �h�⇤, which has been varied from 0.01 to
1.0. In what follows, results are shown with a zero Dirichlet inflow and a Robin boundary condition at the outflow.
Figure 10 shows the contour plots of ûi for the least stable mode S1, which is stationary and remains stable when � is
increased to 1. For a purely two-dimensional perturbation field, the mode structure extends from a region of small
velocity in the indentation and grows in magnitude further downstream. Near the outflow boundary, the streamwise
perturbation velocity is maximum. Given the aforementioned di�culty of dealing with a short base flow streamwise
domain, the spatial extent of the structure cannot be fully described. As � increases, the mode remains stable. However,
the region of maximum streamwise perturbation velocity is gradually transferred to a region localized in the indentation
area, suggesting that two superimposed modes might coexist and merge at greater spanwise wavenumbers. The values
of � for which the stationary mode is least stable are 0.1-0.2 corresponding to Lz in the range 14.25-28.50h.

For the deepest indentation case and � = 0, the absolute temporal instability corresponds to a localized feature above
the indentation region and slightly shifted downstream as seen in the top-left part of Fig. 11. The mode is stationary,
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Fig. 10 Spatial distribution of streamwise perturbation velocity amplitude | û | with increasing values of � for
the least stable temporal mode S1 in the h = 1.62 mm case. Top-left: � = 0. Top-right: � = 0.04. Bottom-left:
� = 0.1. Bottom-right: � = 1.

Fig. 11 Spatial distribution of streamwise perturbation velocity amplitude | û | with increasing values of � for
the most unstable temporal mode S2 in the h = 2.17 mm case. Top-left: � = 0, unstable. Top-right: � = 0.05,
unstable. Bottom-left: � = 0.1, unstable. Bottom-right: � = 1, stable.
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!r = 0 (to numerical accuracy) and unstable up to � = 0.5 corresponding to Lz ⇡ 4.25h. It becomes stable as � further
increases and Lz decreases. Hence, the absolute instability of the boundary layer is weakened by smaller periodicity
wavelengths. The localized structure is stretched in the streamwise direction as the wavenumber � increases.

Fig. 12 Spatial distribution of streamwise perturbation ûi (left) and spanwise perturbation ŵi (right) for the
unstable mode S3, � = 0.01.

The second relevant unstable mode S3 resembles a wave-like mode and could be attributed to a Kelvin-Helmholtz
mechanism of frequency f = 37.8 Hz. Figure 12 represents the corresponding streamwise and spanwise perturbation
velocity developing spatially in the wake of the indentation region for � = 0.01. The mode becomes rapidly stable,
beyond � = 0.02 and the wave-like structure is found to degenerate with further increments in �.

VI. Conclusions
This work comprised an initial analysis of how localized surface indentations impacts the stability of a developing

boundary layer featuring two-dimensional LSBs. The numerical investigation was performed with a two-dimensional
steady base flow assumption, together with a periodicity assumption of instabilities in the spanwise direction. The
indentation with the deepest depth, and hence strongest laminar separation bubble intensity distinguishes itself from the
shallower indentations. Two distinct analyses were undertaken.

In the temporal BiGlobal analysis, consistent with literature, it was found that the flow is first temporally unstable due
to a stationary mode localized near the indentation region and second to a traveling Kelvin-Helmholtz mode. However,
the former was found to become stable below spanwise periodicity lengths of 4.25h while the latter is stabilized as
soon as the spanwise wavenumber becomes positive. The performed receptivity analysis showed that a preexisting,
incoming TS wave is amplified in the wake of the h = 0.81 mm and h = 1.62 mm indentations over a limited range of
frequencies. The deepest indentation depth features significant levels of amplification, and a potential manifestation
of a new mechanism where the time-harmonic, linearized Navier Stokes framework suggests a strong upstream and
downstream propagating structure; the physical mechanism of which requires to be understood. This could potentially
be tied in with the occurrence and prediction of the unstable stationary mode found with the BiGlobal analysis, however
further work is required to fully describe the findings.

Furthermore, we successfully applied the perfectly matched layer to the incompressible, time-harmonic LNS
equations to absorb outgoing waves at the computational boundaries. This implies that the forced receptivity problem
and spatial BiGlobal problems can be treated autonomously, by setting damping-based PML parameters rather than
dealing with more tedious wave-dependent parameters. We believe this provides a more generic boundary treatment.
Applying the method to the temporal BiGlobal problem required a small adjustment and the impact on physics was
solely characterized by spurious eigenvalues on the spectrum.

The parametric studies were performed with rapid turnover thanks to the parallel e�ciency of the computational tool.
Extending the analysis to a TriGlobal approach is a logical extension of this work, which could also be supplemented
by adjoint analysis in order to describe the sensitivity of the global modes to fully three-dimensional geometrical
deformation and fully three-dimensional base flow variation.
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