Elements of Evolutionary Anthropology

28 November 2017 by Richard

Markov Chains: Why Walk When Tou Can Flow?

Abstract: If you are still using a Gibbs sampler, you are working too hard for too little result.
Newer, better algorithms trade random walks for frictionless flow.

In 1989, Depeche Mode was popular,
the first version of Microsoft Office was
released, large demonstrations brought
down the wall separating East and West
Germany, and a group of statisticians in
the United Kingdom dreamed of
Markov chains on the desktop. In 1997,
they succeeded, with the first public
release of a Windows implementation
of Bayesian inference Using Gibbs
Sampling, BUGS.

BUGS started a revolution in efficient,
desktop Bayesian computation. New David Hasselhoff celebrating, we must assume, BUGS
algorithms now make BUGS obsolete. It

retires with honors. It has done more than any other initiative to promote and
advance applied Bayesian data analysis.

The point of this post isn’t to introduce Markov chains. Markov chains don't really
need an introduction. They are commonplace inference engines. Instead, the point is
to nudge everyone away from Gibbs Sampling and other first-generation

samplers. The serious scientific problem is that inferior samplers—custom
Metropolis-Hastings monsters—still walk the corridors of scientific journals, like
zombies. Better algorithms are already available. We are living in the future now, and
continued use of older, fragile algorithms means that we are working too hard to
produce inferior inferences.

This is not just something for quants to worry about. Every practicing scientist and
analyst must take inference seriously. Whether your work is funded by the public or
answers to stock holders, it isn’t okay to use the second-best approach.

Here’s the outline of the argument. First, I'll re-introduce Metropolis-Hastings, the
algorithm behind Gibbs Sampling and similar Markov chain algorithms. I assume
most readers have at least heard of it. Instead of mathematical rigor, I'll animate the
approach so that the reader can appreciate both why it works and why it cannot scale
with our inferential ambitions. Second, I'll introduce Hamiltonian Monte Carlo, a very
different approach to constructing Markov chains. Again, the goal is not to be
mathematically precise, but to animate the algorithm and show why it works and why
it still has limits. I provide links to more mathematical treatments at the end.

Metropolis, Hastings, and the Random Walk

The simplest and least reliable way of building a Markov chain is the Metropolis-
Hastings algorithm. This is the algorithm that I always teach first, because it is so
simple that it can fit inside a single (old school 140 character) tweet:

?g‘ Richard McElreath & < y
) @rimcelreath

y=sum(rpois(20,2))

n=1e4

p=rep(1,n)

for(i in 2:n){

r=p[i-1]

q=exp(log(r)+rnorm(1)/9)

plil=ifelse(runif(1)<g*y*r*(-y) *exp(-20*(g-r)),q,r)

}

3:53 PM - May 18, 2016 ®

Q 3 O 7 & Copylink to Tweet
If you paste that code into R, you'll get samples from a perfectly good Markov chain.
These algorithms take samples from a target distribution by first (1) making a random
proposal for new parameter values and then (2) accepting or rejecting the proposal. If
both steps are done right, then the accepted parameter values will comprise samples

from the target distribution.

This is easier to see than to understand. Below, I embed the MCMC simulations

written by Chi Feng, found here. The target distribution is a benign two-dimensional
Gaussian—a nice Gaussian hill. You are looking down on it, with its peak in the center.
The Markov chain wanders around this hill, making random proposals to move away
from its current position. These proposals are represented by the arrows. Green
arrows are accepted proposals. The chain moves to the new location. Red arrows are
rejections. No motion.

Random walk Metropolis-Hastings Animation delay [l 250
Reset simulation

Close Controls

As samples build up, the target distribution takes shape, as seen in the histograms on
the bottom and left margins. The algorithm works, even though it blindly stumbles
around the target, doing a kind of random walk.

And that is exactly the problem. A major problem is that Metropolis-Hastings is, well,
a bit too random. So it spends a lot of time re-exploring the same parts of the target,
and unless it is tuned just right, it will also reject a lot of proposals (the red arrows),
wasting computer time.

Here’s another simulation, this time with a harder target: a donut. The donut target
might look weird, but it represents a very common target, by analogy. In high
dimensions—once there are many parameters—the target distribution occupies a
narrow ring (in high-dimensional space). Most of the probability mass is not near the
center. Now look what happens to honorable Metropolis-Hastings:

Random walk Metropolis-Hastings Animation delay [l 250

Reset simulation

Close Controls

Notice how the Markov chain tends to get stuck in specific regions of the donut. Not
only that, but it rejects a lot of proposals (the red arrows), so it wastes a lot of computer
time doing nothing. Given enough time, it can explore the entire target. But it might
take a very long time indeed. When we don’t know what the target looks like in the
first place, this kind of behavior is not only annoying, but also hazardous to inference.

The fundamental problem with Metropolis-Hastings, and with Gibbs-Sampling as a
special case, is that it is just too random. In simple targets, that isn’t so bad. But in even
moderately complex targets, it means inference often isn’t reliable. It tends to get
stuck in narrow regions of the target. There must be a better way.

Better Living Through Physics

If there’s a random way
to do something, there’s
usually a less random way
that is both better and
requires more thought.
Instead of making
random proposals,
suppose instead that you
run a physics simulation.
This is going to sound
crazy, but it isn’t. Your
vector of parameters is
now a particle in n-
dimensional space. The Can your Markov chain do this?

surface in this space is a

giant n-dimensional bowl. The shape of the bowl is determined by the shape of the

logarithm of the target distribution. If the target 1s a nice aussian, tor example, then
the log-Gaussian is a smooth parabolic bowl like this (in one-dimension):

minus log probability
2

2 -1 0 1 2
parameter value

To make things a little crazier, suppose that this surface is frictionless. Now what we do
is flick the particle in a random direction. It will frictionlessly flow across the bowl,
eventually turning around. If we take samples of the particle’s position along its path,
before flicking it off in another random trajectory, then we can learn about the shape
of the surface.

This is the principle behind Hamiltonian Monte Carlo. It will be easier to see it in
action. Here is another simulation, this time using Hamiltonian Monte Carlo, again on
the two-dimensional Gaussian target. The paths are flicks of the particle, and the
green arrows again represent accepted proposals.

Hamiltonian Monte Carlo Animation delay [l 250
Reset simulation

Close Controls

ow the proposals are both within the high-probability region of the target—so many
fewer proposals are rejected—and the proposals can get far away from their starting
point, so that the chain efficiently explores the whole shape of the target in less time.
Effectively, it flows across the target and maps out its whole shape much faster.

The cost of all this elegance is needing more information about the target.
Hamiltonian Monte Carlo does a lot more calculation. But it also needs fewer samples
to get a good image of the target. Where this really counts is with the donut. Let’s
revisit it:

Hamiltonian Monte Carlo Animation delay [l 250

Reset simulation

Close Controls

Now instead of getting stuck, the chain sweeps around the target. Even though all the
chain knows at any moment in time is the local shape of the target—it can’t see the
whole distribution like you can here—it still manages to glide smoothly around it.
This shouldn’t be so amazing—a ball doesn’t know the shape of the surface it rolls on,
yet its path is governed by it.

Stan is NUTS

There are still some improvements to be had. Hamiltonian Monte Carlo needs to be
told how many steps to take in its simulated paths. The step number determines how
long the path continues before a new flick is made in a new random direction. If it
takes too few steps, then it ends up with samples too similar to one another. If it takes
too many, it can also end up with samples too similar to one another. Why? Because
the path eventually makes a U-turn. Here’s an example.

Hamiltonian Monte Carlo Animation delay [l 250

Reset simulation

Close Controls

The path goes on long enough that it often eats its own tail—it makes an unfortunate
U-turn. The algorithm still works, but it isn’t very efficient, because it again explores in
local spaces. We can of course tune the number of steps by hand, but that is not so
easy when the target distribution is complex.

The No U-Turn Sampler (NUTS) is an approach for adaptively finding a good number
of steps. The NUTS algorithm tries to figure out when the path starts to turn around.
In order to do this efficiently, it needs to simulate the path in both directions. It looks
pretty weird:

Naive No-U-Turn Sampler Animation delay [l 250
Reset simulation

Close Controls

Notice how the path grows in both directions. This is the algorithm figuring out when
the path turns around. When the path starts to turn around, NUTS stops the
simulation and takes a sample. Then it flicks the particle in another random direction
and starts another simulation. There are lots of little adaptive nudges in these
algorithms that help them explore the target more efficiently. An implementation like
Stan (mc-stan.org) uses an advanced version of NUTS that is even slicker.

Problems Remain

Hamiltonian algorithms still have limitations. Some targets are still hard to explore.
Here’s a example: a multimodal target. While the paths do a good job exploring each
lump of probability mass, they have trouble transitioning among them.

Naive No-U-Turn Sampler Animation delay [l 250

Reset simulation

Close Controls

Targets like this are not so unusual. They arise in many classification and latent
variable models. With some clever coding, you can collapse some modes together. But
you have to realize what is going on, first. Other issues arise with models that contain
very steep changes in log-probability. Wizards are working on solutions to these
problems. But even before solutions are found, Hamiltonian samplers are typically
much better than Gibbs zombies.

Discrete Parameters

One aspect of Hamiltonian Monte Carlo that keeps some people from adopting it is

that it fequires continuous parameter spaces—digcrete pai‘améters are not allowed.
Discrete parameters are parameters that can only take, for example, integer values.
These are useful for a wide variety of state-based models.

Hamiltonian samplers can sample from such models, however. It just takes a little
more work in thinking about the target distribution. This topic really needs its own
post. I've written one here. An advantage of using Hamiltonian Monte Carlo for such
models is that they often end up sampling much better than going the easy way and
using Gibbs. I think another advantage is that it forces the user to understand the
probability model better. This is not a small benefit, in my experience.

Read More

The BUGS project’s history is summarized in: Lunn, Spiegelhalter, and Best. (2009).
“The BUGS project: Evolution, critique and future directions.” doi:10.1002/sim.3680

Hamiltonian Monte Carlo was originally called “Hybrid Monte Carlo”: Duane,
Kennedy, Pendleton, and Roweth (1987) “Hybrid Monte Carlo”. doi:10.1016/0370-
2693(87)91197-X

The No U-Turn Sampler (NUTS) was first described by Hoffman and Gelman (2011)
“The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte
Carlo.” arxiv.org/abs/1111.4246

e«

Michael Betancourt’s “Conceptual Introduction to Hamiltonian Monte Carlo” is only
slightly technical and worth your time. arxiv.org/abs/1701.02434

Share this:

W Twitter | @) Facebook | | & Email

